Động lực của sóng rogue trên nền đa soliton cho phương trình Hirota ba thành phần được ghép nối

International Journal of Dynamics and Control - Tập 11 - Trang 928-933 - 2022
N. Song1, Y. F. Zhang1, H. J. Shang1, R. Liu1
1Department of Mathematics, North University of China, Taiyuan, People’s Republic of China

Tóm tắt

Các sóng cục bộ được nghiên cứu cho phương trình Hirota ba thành phần được ghép nối, thường được sử dụng để mô tả sự lan truyền xung quang trong các mô hình truyền thông khoảng cách xa và hệ thống định tuyến tín hiệu siêu nhanh. Dựa trên các nghiệm gốc và một cặp Lax, sóng breather và nghiệm soliton được suy ra theo biến đổi Darboux. Bằng cách sử dụng mở rộng tiệm cận và biến đổi Darboux-dressing, một nghiệm sóng rogue vector mới được xây dựng. Sau đó, sơ đồ tương tác của sóng rogue và soliton tối sáng hoặc breathers được thu được thông qua mô phỏng số. Hơn nữa, động lực học của các sóng cục bộ được phân tích với các tham số tự do khác nhau. Các kết quả có thể rất quan trọng trong việc làm phong phú và dự đoán hiện tượng sóng rogue phát sinh trong các trường sóng phi tuyến.

Từ khóa

#sóng rogue #phương trình Hirota #sóng cục bộ #soliton #biến đổi Darboux #mô phỏng số

Tài liệu tham khảo

Ling LM, Zhao LC (2013) Simple determinant representation for rogue waves of the nonlinear Schrödinger equation. Phys Rev E 88(4):043201 Ling LM, Guo BL, Zhao LC (2014) High-order rogue waves in vector nonlinear Schrödinger equations. Phys Rev E Stat Nonlinear Soft Matter Phys 89(4):041201 Lee JH, Lin CK (2002) The behaviour of solutions of NLS equation of derivative type in the semiclassical limit. Chaos, Solitons Fractals 13(7):1475–1492 Zhong WP, Belic M, Malomed BA, Huang TW (2015) Breather management in the derivative nonlinear Schrödinger equation with variable coefficients. Annal. Phys. 355:313–321 Liu Y, Gao YT, Xu T, Lü X (2010) Soliton Solution, Bäcklund transformation, and conservation laws for the sasa-satsuma equation in the optical fiber communications. Zeitschrift Für Naturforschung A 65(4):291–300 Kuznetsov EA, Rubenchik AM (1986) Soliton stability in plasmas and hydrodynamics. Phys Rept Rev Sect Phys Lett 142:103–165 Andreev PA (2013) First principles derivation of NLS equation for BEC with cubic and quintic nonlinearities at nonzero temperature:dispersion of linear waves. Int J Modern Phys B 27(6):1350017 Hasegawa A, Tappert F (1973) Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl Phys Lett 23(3):142–144 Manakov SV (1974) On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Sov Phys JETP 38:248–253 Radhakrishnan R, Aravinthan K (2007) A dark-bright optical soliton solution to the coupled nonlinear Schrödinger equation. J Phys A: Math Gen 40:13023 Qin YH, Zhao LC, Yang ZQ, Ling LM (2021) Multivalley dark solitons in multicomponent Bose-Einstein condensates with repulsive interactions. Phys Rev E 104:014201 Kuznetsov EA (1977) Solitons in parametrically unstable plasma. Akademiia Nauk SSSR Doklady 236:575–577 Ma YC (1979) The perturbed plane-wave solutions of the cubic Schrödinger equation. Stud Appl Math 60:43–58 Sullivan J, Charalampidis EG, Cuevas-Maraver J, Kevrekidis PG (2020) Kuznetsov-Ma breather-like solutions in the Salerno model. Eur Phys J Plus 135:607–618 Draper L (1965) Freak ocean waves. Marin Obs 35:193–195 Chen SH, Soto-Crespo JM, Grelu P (2014) Dark three-sister rogue waves in normally dispersive optical fibers with random birefringence. Opt Express 22:27632 Chen SH, Baronio F, Mihalache D (2017) Versatile rogue waves in scalar, vector, and multidimensional nonlinear systems. J Phys A Math Genera 50:463001 Lin SN, Chen Y (2022) A two-stage physics-informed neural network method based on conserved quantities and applications in localized wave solutions. J Chem Phys 457:111053 Xu T, Chen Y (2018) Mixed interactions of localized waves in the three-component coupled derivative nonlinear Schrödinger equations. Nonlinear Dyn 92:2133–2142 Radhakrishnan R, Aravinthan K (2007) A dark-bright optical soliton solution to the coupled nonlinear Schrödinger equation. J Phys A Math Gen 40:13023 Baronio F, Degasperis A, Conforti M (2012) Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic Rogue waves. Phys Rev Lett 109(4):04321 Wang XB, Han B (2019) The three-component coupled nonlinear Schrödinger equation: Rogue waves on a multi-soliton background and dynamics. Europhys Lett 126(1):15001–15001 Yin HM, Tian B, Zhao XC (2020) Chaotic breathers and breather fusion for a vector nonlinear Schrödinger equation in a birefringent optical fiber or wavelength division multiplexed system. Appl Math Comput 368:124768 Tian SF (2019) Lie symmetry analysis, conservation laws and solitary wave solutions to a fourth-order nonlinear generalized Boussinesq water wave equation-ScienceDirect. Appl Math Lett 100:106056–106056 Mahalingam A, Porsezian K (2001) Propagation of dark solitons with higher-order effects in optical fibers. Phys Rev E 64:046608 Zhu HW, Tian B (2008) A bilinear Bäcklund transformation and N-soliton-like solution of three coupled higher-order nonlinear Schrödinger equations with symbolic computation. Commun Theor Phys 50(3):689–695 Seenuvasakumaran P, Mahalingam A, Porsezian K (2008) Dark solitons in N-coupled higher order nonlinear Schrödinger equations. Commun Nonlinear Sci Numer Simul 13(7):1318–1328 Xu T, Chen Y (2017) Localized Nonlinear Waves in the three-component coupled Hirota Equations. Zeitschrift Naturforschung Teil A 72(11):1053 Daniel M, Latha MM (2002) Soliton in alpha helical proteins with interspine coupling at higher order. Phys Lett A 302(2–3):94–104 Lü X, Lin FH (2015) Soliton excitations and shape-changing collisions in alpha helical proteins with interspine coupling at higher order. Commun Nonlinear Sci Numer Simul 32:241–261 Mu G, Qin ZY, Grimshaw R (2014) Dynamics of rogue waves on a multi-soliton background in a vector nonlinear Schrödinger equation. Eprint Arxiv 75(1):1–20 Dong MJ, Tian LX (2021) Modulation instability, rogue waves and conservation laws in higher order nonlinear Schrödinger equation. Commun Theor Phys 73(2):025001