Động lực học của phương trình phi tuyến hyperbolic loại Kirchhoff

Springer Science and Business Media LLC - Tập 61 - Trang 1-43 - 2022
Jianyi Chen1, Yimin Sun2, Zonghu Xiu1, Zhitao Zhang3,4,5
1Science and Information College, Qingdao Agricultural University, Qingdao, People’s Republic of China
2School of Mathematics, Northwest University, Xi’an, People’s Republic of China
3School of Mathematical Sciences, Jiangsu University, Zhenjiang, People’s Republic of China
4HLM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, People’s Republic of China
5School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China

Tóm tắt

Trong bài báo này, chúng tôi nghiên cứu bài toán giá trị biên ban đầu của phương trình Kirchhoff hyperbolic quan trọng $$\begin{aligned} u_{tt}-\left( a \int _\text{\O}mega |\nabla u|^2 \mathrm {d}x +b\right) \Delta u = \lambda u+ |u|^{p-1}u , \end{aligned}$$ trong đó a, $$b>0$$, $$p>1$$, $$\lambda \in {\mathbb {R}}$$ và năng lượng ban đầu là rất lớn. Chúng tôi chứng minh một số định lý mới về động lực học, chẳng hạn như tính giới hạn hoặc gia tăng hữu hạn thời gian của nghiệm dưới các giá trị khác nhau của a, b, $$\lambda$$ và dữ liệu ban đầu trong các trường hợp sau: (i) $$11/\Lambda$$, (iii) $$p=3$$, $$a \le 1/\Lambda$$ và $$\lambda b\lambda _1$$, (v) $$p>3$$ và $$\lambda \le b\lambda _1$$, (vi) $$p>3$$ và $$\lambda > b\lambda _1$$, trong đó $$\lambda _1 = \inf \left\{ \Vert \nabla u\Vert ^2_2 :~ u\in H^1_0(\text{\O}mega )\ \mathrm{và}\ \Vert u\Vert _2 =1\right\} $$ và $$\Lambda = \inf \left\{ \Vert \nabla u\Vert ^4_2 :~ u\in H^1_0(\text{\O}mega )\ \mathrm{và}\ \Vert u\Vert _4 =1\right\} $$. Hơn nữa, chúng tôi chứng minh tính bất biến của một số tập hợp ổn định và không ổn định của nghiệm đối với a, b và $$\lambda$$ phù hợp, và đưa ra các điều kiện đủ của dữ liệu ban đầu để tạo ra một vùng chân không của nghiệm. Do hiệu ứng không địa phương do điều khoản tích phân vi phân không địa phương gây ra, chúng tôi chỉ ra nhiều sự khác biệt thú vị giữa hiện tượng gia tăng của bài toán trong trường hợp $$a>0$$ và $$a=0$$.

Từ khóa


Tài liệu tham khảo

Alves, C.O., Corrêa, F.J.S.A., Ma, T.F.: Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 49, 85–93 (2005) Arosio, A., Panizzi, S.: On the well-Posedness of the Kirchhoff string. Trans. Am. Math. Soc. 348, 305–330 (1996) Bernstein, S.: Sur une calasse d’équations fonctionnelles aux dérivées partielles. Bull. Acad. Sci. URSS. Sér. Math. [Izv. Akad. Nauk SSSR] 4, 17–26 (1940) Brézis, H., Coron, J.M., Nirenberg, L.: Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz. Commun. Pure Appl. Math. 33, 667–689 (1980) Brown, K.J., Zhang, Y.P.: The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function. J. Differ. Equ. 193, 481–499 (2003) Cazenave, T.: Uniform estimates for solutions of nonlinear Klein-Gordon equations. J. Funct. Anal. 60, 36–55 (1985) Chen, J.Y., Zhang, Z.T.: Existence of multiple periodic solutions to asymptotically linear wave equations in a ball, Calc. Var. Partial J. Differ. Equ. 56 (2017) Art. 58 Chen, C.Y., Kuo, Y.C., Wu, T.F.: The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions. J. Differ. Equ. 250, 1876–1908 (2011) Chen, H., Liu, G.W.: Well-posedness for a class of Kirchhoff equations with damping and memory terms. IMA J. Appl. Math. 80, 1808–1836 (2015) Chen, J.Y., Zhang, Z.T.: Infinitely many periodic solutions for a semilinear wave equation in a ball in \({\mathbb{R}}^n\). J. Differ. Equ. 256, 1718–1734 (2014) Chen, J.Y., Zhang, Z.T.: Existence of infinitely many periodic solutions for the radially symmetric wave equation with resonance. J. Differ. Equ. 260, 6017–6037 (2016) D’Ancona, P., Spagnolo, S.: Global solvability for the degenerate Kirchhoff equation with real analytic data. Invent. Math. 108, 247–262 (1992) D’Ancona, P., Spagnolo, S.: Nonlinear perturbations of the Kirchhoff equation. Commun. Pure Appl. Math. 47, 1005–1029 (1994) Deng, Y.B., Peng, S.J., Shuai, W.: Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in \({\mathbb{R}}^3\). J. Funct. Anal. 269, 3500–3527 (2015) Ding, Y.H., Li, S.J., Willem, M.: Periodic solutions of symmetric wave equations. J. Differ. Equ. 145, 217–241 (1998) Figueiredo, G.M., Ikoma, N., Santos Júnior, J.R.: Existence and concentration result for the Kirchhoff type equations with general nonlinearities. Arch. Rational Mech. Anal. 213, 931–979 (2014) Gazzola, F., Squassina, M.: Global solutions and finite time blow up for damped semilinear wave equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 23, 185–207 (2006) Ghisi, M.: Some remarks on global solutions to nonlinear dissipative mildly degenerate Kirchhoff strings. Rend. Sem. Mat. Univ. Padova 106, 185–205 (2001) Ghisi, M., Gobbino, M.: Derivative loss for Kirchhoff equations with non-Lipschitz nonlinear term. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 8, 613–646 (2009) Ghisi, M., Gobbino, M.: A uniqueness result for Kirchhoff equations with non-Lipschitz nonlinear term. Adv. Math. 223, 1299–1315 (2010) Ghisi, M., Gobbino, M.: Kirchhoff equation from quasi-analytic to spectral-gap data. Bull. Lond. Math. Soc. 43, 374–385 (2011) Hirosawa, F.: Global solvability for Kirchhoff equation in special classes of non-analytic functions. J. Differ. Equ. 230, 49–70 (2006) Huang, Y.S., Liu, Z., Wu, Y.Z.: On finding solutions of a Kirchhoff type problem. Proc. Am. Math. Soc. 144, 3019–3033 (2016) Ikehata, R.: On solutions to some quasilinear hyperbolic equations with nonlinear inhomogeneous terms. Nonlinear Anal. 17, 181–203 (1991) Ikehata, R., Okazawa, N.: A class of second order quasilinear evolution equations. J. Differ. Equ. 114, 106–131 (1994) Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883) Liang, Z.P., Li, F.Y., Shi, J.P.: Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior. Ann. Inst. H. Poincaré Anal. Non Linéaire 31, 155–167 (2014) Lions, J.L.: On some questions in boundary value problems of mathematical physics. In: G.M. de la Penha, L.A. Medeiros (Eds.) Contemporary Developments in Continuum Mechanics and Partial Differential Equations, North-Holland Math. Stud., vol. 30, North-Holland, Amsterdam, New York, pp. 284–346 (1978) Liu, Y.C.: On potential wells and vacuum isolating of solutions for semilinear wave equations. J. Differ. Equ. 192, 155–169 (2003) Liu, J.J., Pucci, P., Zhang, Q.H.: Wave breaking analysis for the periodic rotation-two-component Camassa–Holm system. Nonlinear Anal. 187, 214–228 (2019) Liu, Y.C., Zhao, J.S.: On potential wells and applications to semilinear hyperbolic equations and parabolic equations. Nonlinear Anal. 64, 2665–2687 (2006) Manfrin, R.: On the global solvability of Kirchhoff equation for non-analytic initial data. J. Differ. Equ. 211, 38–60 (2005) Matsuyama, T., Ruzhansky, M.: Global well-posedness of Kirchhoff systems. J. Math. Pures Appl. 100, 220–240 (2013) Matsuyama, T., Ruzhansky, M.: Almost global well-posedness of Kirchhoff equation with Gevrey data. C. R. Acad. Sci. Paris, Ser. I 355, 522–525 (2017) Matsuyama, T., Ruzhansky, M.: On the Gevrey well-posedness of the Kirchhoff equation. J. D’Analyse Math. 137, 449–468 (2019) Milla Miranda, M., San Gil Jutuca, L.P.: Existence and boundary stabilization of solutions for the Kirchhoff equation. Commun. Partial Differ. Equ. 24, 1759–1800 (1999) Naimen, D.: On the Brezis–Nirenberg problem with a Kirchhoff type perturbation. Adv. Nonlinear Stud. 15, 135–156 (2015) Ono, K.: On global existence, asympotic stability and blowing up of solutions for some degenerate non-linear wave equations of Kirchhoff type with a strong dissipation. Math. Methods Appl. Sci. 20, 151–177 (1997) Pan, N., Pucci, P., Xu, R.Z., Zhang, B.L.: Degenerate Kirchhoff-type wave problems involving the fractional Laplacian with nonlinear damping and source terms. J. Evol. Equ. 19, 615–643 (2019) Pan, N., Pucci, P., Zhang, B.L.: Degenerate Kirchhoff-type hyperbolic problems involving the fractional Laplacian. J. Evol. Equ. 18(2), 385–409 (2018) Perera, K., Zhang, Z.T.: Nontrivial solutions of Kirchhoff-type problems via the Yang index. J. Differ. Equ. 221, 246–255 (2006) Pucci, P., Saldi, S.: Asymptotic stability for nonlinear damped Kirchhoff systems involving the fractional \(p\)-Laplacian operator. J. Differ. Equ. 263(5), 2375–2418 (2017) Rabinowitz, P.H.: Free vibrations for a semilinear wave equation. Commun. Pure Appl. Math. 31, 31–68 (1978) Sattinger, D.H.: On global solution of nonlinear hyperbolic equations. Arch. Rational Mech. Anal. 30, 148–172 (1968) Schechter, M.: Rotationally invariant periodic solutions of semilinear wave equations. Abstr. Appl. Anal. 3, 171–180 (1998) Sun, D.D., Zhang, Z.T.: Existence and asymptotic behaviour of ground state solutions for Kirchhoff-type equations with vanishing potentials, Z. Angew. Math. Phys. 70 (2019) Art. 37 Sun, D.D., Zhang, Z.T.: Existence of positive solutions to Kirchhoff equations with vanishing potentials and general nonlinearity, SN Partial Differ. Equ. Appl. 1 (2020) Art. 8 Tang, X.H., Chen, S.T.: Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials, Calc. Var. Partial Differ. Equ. 56 (2017) Art. 110 Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996) Wu, S.T., Tsai, L.Y.: On global existence and blow-up of solutions for an integro-differential equation with strong damping. Taiwan. J. Math. 10, 979–1014 (2006) Wu, Y.H., Xue, X.P., Shen, T.L.: Absolute stability of the Kirchhoff string with sector boundary control. Automatica 50, 1915–1921 (2014) Zhang, Z.T.: Variational, Topological, and Partial Order Methods with their Applications. Springer, Berlin (2013) Zhang, Z.T., Perera, K.: Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow. J. Math. Anal. Appl. 317, 456–463 (2006)