Dynamics of field nonclassicality in the Jaynes–Cummings model

Quantum Information Processing - Tập 20 - Trang 1-21 - 2021
Shuangshuang Fu1, Shunlong Luo2,3, Yue Zhang4,5
1School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
2Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
3School of Mathematical Sciences, University of the Chinese Academy of Sciences, Beijing, China
4State Key Laboratory of Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing, China
5Beijing Academy of Quantum Information Sciences, Beijing, China

Tóm tắt

Employing an informational quantifier for nonclassicality of bosonic field based on the Wigner–Yanase skew information, we investigate the dynamics of field nonclassicality in the Jaynes–Cummings model evolving from several typical initial atom–field states: coherent states, Fock states, and thermal states for the field, and ground state, excited state, symmetric superposition state, and maximally mixed state for the atom. We reveal some intriguing features of the field dynamics and their sensitivity on the initial states from an informational perspective. The results show that field nonclassicality can be generated in most cases and exhibits complex dynamic patterns involving collapses and revivals. A remarkable observation is that the initial coherent field states, assisted by the atom, can be converted to almost maximally nonclassical field states constrained by the average photon number, even though all coherent states are the most classical and possess the same minimal nonclassicality among pure states. The field dynamics may be exploited to estimate the initial atom as well as the field states, prepare desired evolving states and process quantum information.

Tài liệu tham khảo

Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994) Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997) Dodonov, V.V., Man’ko, V.I.: Theory of Nonclassical States of Light. Taylor & Francis, London (2003) Gerry, C., Knight, P.L.: Introductory Quantum Optics. Cambridge University Press, Cambridge (2005) Haroche, S., Raimond, J.M.: Exploring the Quantum. Oxford University Press, Oxford (2006) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010) Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963) Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963) Titulaer, U.M., Glauber, R.J.: Correlation functions for coherent fields. Phys. Rev. 140, B676 (1965) Haroche, S.: Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary. Rev. Mod. Phys. 85, 1083 (2013) Wineland, D.J.: Nobel Lecture: Superposition, entanglement, and raising Schrödinger’s cat. Rev. Mod. Phys. 85, 1103 (2013) Mandel, L.: Sub-Poissonian photon statistics in resonance fluorescence. Opt. Lett. 4, 205 (1979) Mandel, L.: Non-classical states of the electromagnetic field. Phys. Scr. T12, 34 (1986) Hillery, M.: Nonclassical distance in quantum optics. Phys. Rev. A 35, 725 (1987) Dodonov, V.V., Man’ko, O.V., Man’ko, V.I., Wünsche, A.: Hilbert-Schmidt distance and non-classicality of states in quantum optic. J. Mod. Opt. 47, 633 (2000) Marian, P., Marian, T.A., Scutaru, H.: Quantifying nonclassicality of one-Mode Gaussian states of the radiation field. Phys. Rev. Lett. 88, 153601 (2002) Dodonov, V.V., Renó, M.B.: Classicality and anticlassicality measures of pure and mixed quantum states. Phys. Lett. A 308, 249 (2003) Boca, M., Ghiu, I., Marian, P., Marian, T.A.: Quantum Chernoff bound as a measure of nonclassicality for one-mode Gaussian states. Phys. Rev. A 79, 014302 (2009) Giraud, O., Braun, P., Braun, D.: Quantifying quantumness and the quest for queens of quantum. New J. Phys. 12, 063005 (2010) Mari, A., Kieling, K., Nielsen, B.M., Polzik, E.S., Eisert, J.: Directly estimating nonclassicality. Phys. Rev. Lett. 106, 010403 (2011) Nair, R.: Nonclassical distance in multimode bosonic systems. Phys. Rev. A 95, 063835 (2017) Lemos, H.C.F., Almeida, A.C.L., Amaral, B., Oliveira, A.C.: Roughness as classicality indicator of a quantum state. Phys. Lett. A 382, 823 (2018) Gehrke, C., Sperling, J., Vogel, W.: Quantification of nonclassicality. Phys. Rev. A 86, 052118 (2012) Vogel, W., Sperling, J.: Unified quantification of nonclassicality and entanglement. Phys. Rev. A 89, 052302 (2014) Sperling, J., Vogel, W.: Convex ordering and quantification of quantumness. Phys. Scr. 90, 074024 (2015) Lee, C.T.: Measure of the nonclassicality of nonclassical states. Phys. Rev. A 44, R2775 (1991) Lee, C.T.: Moments of P functions and nonclassical depths of quantum states. Phys. Rev. A 45, 6586 (1992) Lee, C.T.: Theorem on nonclassical states. Phys. Rev. A 52, 3374 (1995) Lütkenhaus, N., Barnett, S.M.: Nonclassical effects in phase space. Phys. Rev. A 51, 3340 (1995) Malbouisson, J.M.C., Baseia, B.: On the Measure of nonclassicality of field states. Phys. Scr. 67, 93 (2003) Kenfack, A., Zyczykowski, K.: Negativity of the Wigner function as an indicator of non-classicality. J. Phys. B 6, 396 (2004) Asbóth, J.K., Calsamiglia, J., Ritsch, H.: Computable measure of nonclassicality for light. Phys. Rev. Lett. 94, 173602 (2005) Bose, S.: Wehrl-entropy-based quantification of nonclassicality for single-mode quantum optical states. J. Phys. A 52, 025303 (2018) De Bièvre, S., Horoshko, D.B., Patera, G., Kolobov, M.I.: Measuring nonclassicality of bosonic field quantum states via operator ordering sensitivity. Phys. Rev. Lett. 122, 080402 (2019) Luo, S., Zhang, Y.: Quantifying nonclassicality via Wigner-Yanase skew information. Phys. Rev. A 100, 032116 (2019) Luo, S., Zhang, Y.: Quantumness of bosonic field states. Inter. J. Theor. Phys. 59, 206 (2020) Yadin, B., Binder, F.C., Thompson, J., Narasimhachar, V., Gu, M., Kim, M.S.: Operational resource theory of continuous-variable nonclassicality. Phys. Rev. X 8, 041038 (2018) Kim, M.S., Son, W., Bužek, V., Knight, P.L.: Entanglement by a beam splitter: nonclassicality as a prerequisite for entanglement. Phys. Rev. A 65, 032323 (2002) Wang, X.: Theorem for the beam-splitter entangler. Phys. Rev. A 66, 024303 (2002) De Oliveira, M.C., Munro, W.J.: Nonclassicality and information exchange in deterministic entanglement formation. Phys. Lett. A 320, 352 (2004) Ge, W., Tasgin, M.E., Zubairy, M.S.: Conservation relation of nonclassicality and entanglement for Gaussian states in a beam splitter. Phys. Rev. A 92, 052328 (2015) Killoran, N., Steinhoff, F.E.S., Plenio, M.B.: Converting nonclassicality into entanglement. Phys. Rev. Lett. 116, 080402 (2016) Regula, B., Piani, M., Cianciaruso, M., Bromley, T.R., Streltsov, A., Adesso, G.: Converting multilevel nonclassicality into genuine multipartite entanglement. New J. Phys. 20, 033012 (2018) Fu, S., Luo, S., Zhang, Y.: Converting nonclassicality to quantum correlations via beamsplitters. Europhys. Lett. 128, 3 (2020) Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006) Rivas, Á., Luis, A.: Precision quantum metrology and nonclassicality in linear and nonlinear detection schemes. Phys. Rev. Lett. 105, 010403 (2010) Kwon, H., Tan, K.C., Volkoff, T., Jeong, H.: Nonclassicality as a quantifiable resource for quantum metrology. Phys. Rev. Lett. 122, 040503 (2019) Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89 (1963) Stenholm, S.: Quantum theory of electromagnetic fields interacting with atoms and molecules. Phys. Rep. 6, 1 (1973) Ackerhalt, J.R., Rza̧żewski, K.: Heisenberg-picture operator perturbation theory. Phys. Rev. A 12, 2549 (1975) Aravind, P.K., Hirschfelder, J.O.: Two-state systems in semiclassical and quantized fields. J. Phys. Chem. 88, 4788 (1984) Yoo, H.I., Eberly, J.H.: Dynamical theory of an atom with two or three levels interacting with quantized cavity fields. Phys. Rep. 118, 239 (1985) Shore, B.W., Knight, P.L.: Topical review The Jaynes-Cummings model. J. Mod. Opt. 40, 1195 (1993) Narozhny, N.B., Sanchez-Mondragon, J.J., Eberly, J.H.: Coherence versus incoherence: collapse and revival in a simple quantum model. Phys. Rev. A 23, 236 (1981) Meystre, P., Zubairy, M.S.: Squeezed states in the Jaynes-Cummings model. Phys. Lett. A 89, 390 (1982) Knight, P.L., Radmore, P.M.: Quantum origin of dephasing and revivals in the coherent-state Jaynes-Cummings model. Phys. Rev. A 26, 676 (1982) Knight, P.L.: Quantum fluctuations and squeezing in the interaction of an atom with a single field mode. Phys. Scripta T12, 51 (1986) Puri, R.R., Agarwal, G.S.: Collapse and revival phenomena in the Jaynes-Cummings model with cavity damping. Phys. Rev. A 33, 3610(R) (1986) Rempe, G., Walther, H., Klein, W.: Observation of quantum collapse and revival in a one-atom maser. Phys. Rev. Lett. 58, 353 (1987) Kuklinski, J.R., Madajczyk, J.L.: Strong squeezing in the Jaynes-Cummings model. Phys. Rev. A 37, 3175 (1988) Filipowicz, P., Javanainen, J., Meystre, P.: Quantum and semiclassical steady states of a kicked cavity mode. J. Opt. Soc. Am. B 3, 906 (1986) Krause, J., Scully, M.O., Walther, T., Walther, H.: Preparation of a pure number state and measurement of the photon statistics in a high-Q micromaser. Phys. Rev. A 39, 1915 (1989) Gea-Banacloche, J.: Collapse and revival of the state vector in the Jaynes-Cummings model: An example of state preparation by a quantum apparatus. Phys. Rev. Lett. 65, 3385 (1990) Gea-Banacloche, J.: Atom- and field-state evolution in the Jaynes-Cummings model for large initial fields. Phys. Rev. A 44, 5913 (1991) Bužek, V., Moya-Cessa, H., Knight, P.L., Phoenix, S.J.D.: Schrödinger-cat states in the resonant Jaynes-Cummings model: Collapse and revival of oscillations of the photon-number distribution. Phys. Rev. A 45, 8190 (1992) Averbukh, I.Sh.: Fractional revivals in the Jaynes-Cummings model. Phys. Rev. A 46, R2205 (1992) Fleischhauer, M., Schleich, W.P.: Revivals made simple: Poisson summation formula as a key to the revivals in the Jaynes-Cummings model. Phys. Rev. A 47, 4258 (1993) Cirac, J.I., Blatt, R., Parkins, A.S., Zoller, P.: Quantum collapse and revival in the motion of a single trapped ion. Phys. Rev. A 49, 1202 (1994) Casanova, J., Romero, G., Lizuain, I., García-Ripoll, J.J., Solano, E.: Deep strong coupling regime of the Jaynes-Cummings model. Phys. Rev. Lett. 105, 263603 (2010) Kukliński, J.R., Madajczyk, J.L.: Strong squeezing in the Jaynes-Cummings model. Phys. Rev. A 37, 3175(R) (1988) Phoenix, S.J.D., Knight, P.L.: Fluctuations and entropy in models of quantum optical resonance, Ann. Phys, (N.Y.) 186, 381 (1988) Phoenix, S.J.D., Knight, P.L.: Establishment of an entangled atom-field state in the Jaynes-Cummings model. Phys. Rev. A 44, 6023 (1991) Aliskenderov, E.I., Dung, H.T., Knöll, L.: Effects of atomic coherences in the Jaynes-Cummings model: Photon statistics and entropy. Phys. Rev. A 48, 1604 (1993) Orlowski, A., Paul, H., Kastelewicz, G.: Dynamical properties of a classical-like entropy in the Jaynes-Cummings model. Phys. Rev. A 52, 1621 (1995) Furuichi, S., Ohya, M.: Quantum mutual entropy for Jaynes-Cummings model. Rep. Math. Phys. 44, 81 (1999) Li, F.-l., Gao, S.-y.: Controlling nonclassical properties of the Jaynes-Cummings model by an external coherent field, Phys. Rev. A 62, 043809 (2000) Bose, S., Fuentes-Guridi, I., Knight, P.L., Vedral, V.: Subsystem purity as an enforcer of entanglement. Phys. Rev. Lett. 87, 050401 (2001) Solano, E., Agarwal, G.S., Walther, H.: Strong-driving-assisted multipartite entanglement in cavity QED. Phys. Rev. Lett. 90, 027903 (2003) Obada, A.S.F., Hessian, H.A.: Entanglement generation and entropy growth due to intrinsic decoherence in the Jaynes-Cummings model. J. Opt. Soc. Am. B 21, 1535 (2004) Boukobza, E., Tannor, D.J.: Entropy exchange and entanglement in the Jaynes-Cummings model. Phys. Rev. A 71, 063821 (2005) Kim, M.S., Park, E., Knight, P.L., Jeong, H.: Nonclassicality of a photon-subtracted Gaussian field. Phys. Rev. A 71, 043805 (2005) Zhang, J., Wang, J., Zhang, T.: Entanglement and nonclassicality evolution of the atom in a squeezed vacuum. Opt. Commun. 277, 353 (2007) Wigner, E.P., Yanase, M.M.: Information content of distributions. Proc. Nat. Acad. Sci. U.S.A. 49, 910 (1963) Luo, S.: Wigner-Yanase skew information and uncertainty relations. Phys. Rev. Lett. 91, 180403 (2003) Luo, S.: Heisenberg uncertainty relation for mixed states. Phys. Rev. A 72, 042110 (2005) Luo, S.: Quantum versus classical uncertainty. Theor. Math. Phys. 143, 681 (2005) Luo, S., Sun, Y.: Quantum coherence versus quantum uncertainty. Phys. Rev. A 96, 022130 (2017) Luo, S., Sun, Y.: Coherence and complementarity in state-channel interaction. Phys. Rev. A 98, 012113 (2018) Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013) Marvian, I., Spekkens, R.W., Zanardi, P.: Quantum speed limits, coherence, and asymmetry. Phys. Rev. A 93, 052331 (2016) Yadin, B., Vedral, V.: General framework for quantum macroscopicity in terms of coherence. Phys. Rev. A 93, 022122 (2016) Leibfried, D., Blatt, R., Monroe, C., Wineland, D.: Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281 (2003)