Dynamics of composition operators with holomorphic symbol
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ansari S.I.: Existence of hypercyclic operators on topological vector spaces. J. Funct. Anal. 148(2), 384–390 (1997)
Badea C., Grivaux S.: Unimodular eigenvalues, uniformly distributed sequences and linear dynamics. Adv. Math. 211(2), 766–793 (2007)
Baker I.N., Pommerenke Ch.: On the iteration of analytic functions in a halfplane, II. J. Lond. Math. Soc. 20(2), 255–258 (1979)
Banks J., Brooks J., Cairns G., Davis G., Stacey P.: On Devaney’s definition of chaos. Am. Math. Monthly 99(4), 332–334 (1992)
Bayart F.: Common hypercyclic vectors for composition operators. J. Oper. Theory 52(2), 353–370 (2004)
Bayart F., Grivaux S.: Hypercyclicité: le rôle du spectre ponctuel unimodulaire. C. R. Math. Acad. Sci. Paris 338(9), 703–708 (2004)
Bayart F., Grivaux S.: Frequently hypercyclic operators. Trans. Am. Math. Soc. 358(11), 5083–5117 (2006)
Bayart F., Grivaux S.: Invariant Gaussian measures for operators on Banach spaces and linear dynamics. Proc. Lond. Math. Soc. (1) 94(1), 181–210 (2007)
Bayart F., Grivaux S., Mortini R.: Common bounded universal functions for composition operators. Illinois J. Math. 52(3), 995–1006 (2008)
Bayart F., Matheron E.: Dynamics of linear operators. Cambridge Tracts in Mathematics, vol. 179. Cambridge University Press, Cambridge (2009)
Bernal-González L., Bonilla A.: Compositional frequent hypercyclicity on weighted Dirichlet spaces. Bull. Belg. Math. Soc. Simon Stevin 17(1), 1–11 (2010)
Bernal-González L., Bonilla A., Calderón-Moreno M.C.: Compositional hypercyclicity equals supercyclicity. Houston J. Math. 33(2), 581–591 (2007)
Bernal-González L., Montes-Rodríguez A.: Non-finite-dimensional closed vector spaces of universal functions for composition operators. J. Approx. Theory 82(3), 375–391 (1995)
Bernal González L., Montes-Rodríguez A.: Universal functions for composition operators. Complex Var. Theory Appl. 27(1), 47–56 (1995)
Bès, J., Martin, Ö: Compositional disjoint hypercyclicity equals disjoint supercyclicity. Houston J. Math. (to appear)
Birkhoff G.D.: Démonstration d’un théoreme elementaire sur les fonctions entiéres. C. R. Math. Acad. Sci. Paris 189, 473–475 (1929)
Bonilla A., Grosse-Erdmann K.-G.: On a theorem of Godefroy and Shapiro. Integr. Equ. Oper. Theory 56(2), 151–162 (2006)
Bonilla A., Grosse-Erdmann K.-G.: Frequently hypercyclic operators and vectors. Ergodic Theory Dyn. Syst. 27(2), 383–404 (2007)
Bonilla A., Grosse-Erdmann K.-G.: Frequently hypercyclic operators and vectors—Erratum. Ergodic Theory Dyn. Syst. 29(6), 1993–1994 (2009)
Bonilla, A., Grosse-Erdmann, K.-G.: Frequently hypercyclic subspaces. Monat. Math. doi: 10.1007/s00605-011-0369-2 (2012)
Bourdon P.S., Shapiro J.H.: Cyclic phenomena for composition operators. Mem. Am. Math. Soc. 125, 596 (1997)
Chan K.C., Sanders R.: A weakly hypercyclic operator that is not norm hypercyclic. J. Oper. Theory 52(1), 39–59 (2004)
Chan K.C., Shapiro J.H.: The cyclic behavior of translation operators on Hilbert spaces of entire functions. Indiana Univ. Math. J. 40(4), 1421–1449 (1991)
Costakis G., Sambarino M.: Genericity of wild holomorphic functions and common hypercyclic vectors. Adv. Math. 182(2), 278–306 (2004)
Cowen C.C.: Iteration and the solution of functional equations for functions analytic in the unit disk. Trans. Am. Math. Soc. 265(1), 69–95 (1981)
Cowen C.C.: Composition operators on H 2. J. Oper. Theory 9(1), 77–106 (1983)
Cowen C.C., Kriete T.L. III: Subnormality and composition operators on H 2. J. Funct. Anal. 81(2), 298–319 (1988)
Cowen C.C., MacCluer B.D.: Composition operators on spaces of analytic functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1995)
Devaney, R.L.: An Introduction to Chaotic Dynamical Systems, 2nd edn. Addison-Wesley Studies in Nonlinearity. Addison-Wesley Publishing Company Advanced Book Program, Redwood City (1989)
Gallardo-Gutiérrez E.A., Montes-Rodríguez A.: The role of the spectrum in the cyclic behavior of composition operators. Mem. Am. Math. Soc. 167, 791 (2004)
Gallardo-Gutiérrez E.A., Partington J.R.: Common hypercyclic vectors for families of operators. Proc. Am. Math. Soc. 136(1), 119–126 (2008)
Godefroy G., Shapiro J.H.: Operators with dense, invariant, cyclic vector manifolds. J. Funct. Anal. 98(2), 229–269 (1991)
Grosse-Erdmann K.-G., Mortini R.: Universal functions for composition operators with non-automorphic symbol. J. Anal. Math. 107, 355–376 (2009)
Grosse-Erdmann K.-G., Peris A.: Frequently dense orbits. C. R. Math. Acad. Sci. Paris 341(2), 123–128 (2005)
Kamali, Z., Hedayatian, K. Khani Robati, B.: Non-weakly supercyclic weighted composition operators. Abstr. Appl. Anal. Art. ID 143808 (2010)
Koenigs G.: Recherches sur les intégrales de certaines équations fonctionnelles. Ann. Sci. École Norm. Sup. (3) 1, 3–41 (1884)
Montes-Rodríguez A., Shkarin S.: Non-weakly supercyclic operators. J. Oper. Theory 58(1), 39–62 (2007)
Pommerenke Ch.: On the iteration of analytic functions in a halfplane. J. Lond. Math. Soc. (2) 19(3), 439–447 (1979)
Read C.J.: The invariant subspace problem for a class of Banach spaces. II. Hypercyclic operators. Isr. J. Math. 63(1), 1–40 (1988)
Shapiro J.H.: Composition Operators and Classical Function Theory. Universitext. Tracts in Mathematics. Springer, New York (1993)
Shapiro, J.H.: Notes on the Dynamics of Linear Operators, pp. 1–61. http://www.mth.msu.edu/shapiro/ (2001)
Shapiro J.H., Smith W., Stegenga D.A.: Geometric models and compactness of composition operators. J. Funct. Anal. 127(1), 21–62 (1995)
Valiron G.: Sur l’iteration des fonctions holomorphes dans un demi-plan. Bull. Sci. Math. (2) 55, 105–128 (1931)