Dynamics of cavitation–structure interaction
Tóm tắt
Từ khóa
Tài liệu tham khảo
Brennen, C.E.: Cavitation and Bubble Dynamics. Oxford Engineering and Sciences Series, vol. 44. Oxford University Press, Oxford (1995)
Knapp, R.T., Daily, J.W., Hammitt, F.G.: Cavitation. McGraw Hill, New York (1970)
Ji, B., Wang, J., Luo, X., et al.: Numerical simulation of cavitation surge and vortical flows in a diffuser with swirling flow. J. Mech. Sci. Technol. 30, 2507–2514 (2016)
Wang, Y., Wu, X., Huang, C., et al.: Unsteady characteristics of cloud cavitating flow near the free surface around an axisymmetric projectile. Int. J. Multiph. Flow 85, 48–56 (2016)
Chen, Y., Chen, X., Li, J., et al.: Large Eddy Simulation and investigation on the flow structure of the cascading cavitation shedding regime around 3D twisted hydrofoil. Ocean Eng. 129, 1–19 (2017)
Kawanami, Y., Kato, H., Yamauchi, H., et al.: Mechanism and control of cloud cavitations. ASME J. Fluids Eng. 119, 788–794 (1997)
Laberteaux, K.R., Ceccio, S.L.: Partial cavity flows. Part 1: Cavities forming on models without spanwise variation. ASME J. Fluid Mech. 431, 1–41 (2002)
Delange, D.F., Debruin, G.J.: Sheet cavitation and cloud cavitation, re-entrant jet and three-dimensionality. Appl. Sci. Res. 58, 91–114 (1997)
Kubota, A., Kato, H., Yamaguchi, H., et al.: Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique. ASME J. Fluids Eng. 111, 204–210 (1989)
Callenaere, M., Franc, J.P., Michel, J.M., et al.: The cavitation instability induced by the development of a re-entrant jet. ASME J. Fluid Mech. 444, 233–256 (2001)
Kawakami, D.T., Fuji, A., Tsujimoto, Y., et al.: An assessment of the influence of cavitation instabilities. J. Fluids Eng. 130, 1–8 (2008)
Li, C.Y., Ceccio, S.L.: Interaction of single travelling bubbles with the boundary layer and attached cavitation. J. Fluid Mech. 322, 329–353 (1996)
Arndt, R.E.A., Song, C.C.S.: Instability of partial cavitation: a numerical/experimental approach. In: Proceedings of Twenty-Third Symposium on Naval Hydrodynamics, Valde Reuil, France (2000)
Li, X., Wang, G., Yu, Z., et al.: Multiphase fluid dynamics and transport processes of low capillary number cavitating flows. Acta. Mech. Sin. 25, 161–172 (2009)
Ausoni, P., Farhat, M., Escaler, X., et al.: Cavitation influence on von Karman vortex shedding and induced hydrofoil vibrations. ASME J. Fluid Eng. 129, 966–973 (2007)
Gopalan, S., Katz, J.: Flow structure and modeling issues in the closure region of attached cavitation. Phys. Fluids 12, 895–911 (2000)
Dang, J., Kuiper, G.: Re-entrant jet modeling of partial cavity flow on three dimensional hydrofoils. ASME J. Fluids Eng. 121, 781–787 (1999)
Dang, J.: Numerical simulation of unsteady partial cavity flows. [Ph.D. Thesis], Technical University of Delft, Netherlands (2000)
Foeth, E.J.: The structure of three-dimensional sheet cavitation. [Ph.D. Thesis], Delft University of Technology, Delft, Netherlands (2008)
Foeth, E.J., Van Terwisga, T., Van Doone, C.: On the collapse structure of an attached cavity on a three-dimensional hydrofoil. ASME J. Fluids Eng. 130, 071303 (2008)
Tseng, C., Shyy, W.: Modeling for isothermal and cryogenic cavitation. Int. J. Heat Mass Trans. 53, 513–525 (2010)
Leroux, J.-B., Astolfi, J.A., Billard, J.Y.: An experimental study of unsteady partial cavitation. J. Fluids Eng. 126, 94–101 (2004)
Peng, X.X., Ji, B., Cao, Y.T., et al.: Combined experimental observation and numerical simulation of the cloud cavitation with U-type flow structures on hydrofoils. Int. J. Multiph. Flow 79, 10–22 (2016)
Senocak, I., Shyy, W.: Evaluation of cavitation models for Navier–Stokes computations. In: Proceedings of FEDSM’02, ASME 2002 Fluids Engineering Division Summer Meeting Montreal, Quebec, Canada (2002)
Senocak, I., Shyy, W.: Interfacial dynamics-based modeling of turbulent cavitating flows. Part-1: Model development and steady-state computations. Int. J. Numer. Methods Fluids 44, 975–995 (2004)
Senocak, I., Shyy, W.: Interfacial dynamics-based modeling of turbulent cavitating flows. Part-2: Time-dependent computations. Int. J. Numer. Methods Fluids 44, 997–1016 (2004)
Kim, S., Brewton, S.: A multiphase approach to turbulent cavitating flows. In: Proceedings of 27th Symposium on Naval Hydrodynamics, Seoul, Korea (2008)
Zhao, Y., Wang, G., Huang, B.: A cavitation model for computations of unsteady cavitating flows. Acta. Mech. Sin. 32, 1–11 (2016)
Hu, C., Wang, G., Chen, G., et al.: A modified PANS model for computations of unsteady turbulence for cavitating flows. Sci. China Phys. Mech. Astron. 57, 1967–1976 (2014)
Chen, Y., Heister, S.D.: Modeling hydrodynamic non-equilibrium in cavitating flows. ASME J. Fluids Eng. 118, 172–178 (1996)
Kubota, A., Kato, H., Yamaguchi, H.: A new modeling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section. ASME J. Fluid Mech. 240, 59–96 (1992)
Kunz, R.F., Boger, D.A., Stinebring, D.R., et al.: A preconditioned Navier–Stokes method for two phase flows with application to cavitation prediction. Comput. Fluids 29, 849–875 (2000)
Singhal, A.K., Athavale, M.M., Li, H., et al.: Mathematical basis and validation of the full cavitation model. ASME J. Fluids Eng. 124, 617–624 (2002)
Delannoy, Y., Kueny, J.L.: Two phase flow approach in unsteady cavitation modeling. In: Proceedings of the Spring Meeting of the Fluids Engineering Division, 153–158 (1990)
Wang, G., Ostoja-Starzewski, M.: Large eddy simulation of a sheet/cloud cavitation on a NACA0015 hydrofoil. Appl. Math. Model. 31, 417–447 (2007)
Merkle, C.L., Feng, J., Buelow, P.E.O.: Computational modeling of sheet cavitations. In: Proceedings of Third International Symposium on Cavitation, Grenoble, France (1998)
Coutier-Delgosha, O., Fortes-Patella, R., Reboud, J.L.: Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitations. ASME J. Fluids Eng. 125, 38–45 (2003)
Kinzel, M.P., Lindau, J.W., Peltier, L.J., et al.: Detached-eddy simulations for cavitating flows. AIAA, 2007-4098 (2007)
Wu, J., Wang, G., Shyy, W.: Time-dependent turbulent cavitating flow computations with interfacial transport and filter based models. Int. J. Numer. Methods Fluids 49, 739–761 (2005)
Reboud, J.L., Stutz, B., Coutier-Delgosha, O.: Two phase flow structure of cavitation: experiment and modeling of unsteady effects. In: Proceedings of the Third Symposium on Cavitation, Grenoble, France (1998)
Huang, B., Wang, G., Yu, Z., et al.: Detached-eddy simulation for time-dependent turbulent cavitating flows. Chin. J. Mech. Eng. 25, 484–490 (2012)
Johansen, S.T., Wu, J., Shyy, W.: Filter-based unsteady RANS computations. Int. J. Heat Fluid Flow 25, 10–21 (2004)
Song, M.T., Xu, L.H., Peng, X.X., et al.: An acoustic approach to determine tip vortex cavitation inception for an elliptical hydrofoil considering nuclei-seeding. Int. J. Multiph. Flow 90, 79–87 (2017)
Arndt, R.E.A., Pennings, P., Bosschers, J., et al.: The singing vortex. Interface Focus 5, 1–11 (2015)
Wang, Y.W., Liao, L.J., Du, T.Z., et al.: A study on the collapse of cavitation bubble surrounding the underwater-launched projectile and its fluid–structure coupling effects. Ocean Eng. 84, 228–236 (2014)
Chae, E.J.: Dynamic Response and Stability of Flexible Hydrofoils in Incompressible and Viscous Flow. [Ph.D. Thesis], University of Michigan, Ann Arbor, America (2015)
Luo, X., Ji, B., Tsujimoto, Y.: A review of cavitation in hydraulic machinery. J. Hydrodyn. Ser. B 28, 335–358 (2016)
Zobeiri, A., Ausoni, P., Avellan, F., et al.: How oblique trailing edge of a hydrofoil reduces the vortex-induced vibration. J. Fluids Struct. 32, 78–89 (2012)
Ji, B., Luo, X.W., Arndt, R.E.A., et al.: Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation–vortex interaction. Ocean Eng. 87, 64–77 (2014)
Chen, G., Wang, G., Hu, C., et al.: Combined experimental and computational investigation of cavitation evolution and excited pressure fluctuation in a convergent–divergent channel. Int. J. Multiph. Flow 72, 133–140 (2015)
De La Torre, O., Escaler, X., Egusquiza, E., et al.: Experimental investigation of added mass effects on a hydrofoil under cavitation conditions. J. Fluids Struct. 39, 173–187 (2013)
Amromin, E., Kovinskaya, S.: Vibration of cavitating elastic wing in a periodically perturbed flow: excitation of subharmonics. J. Fluids Struct. 14, 735–751 (2000)
Kamakoti, R., Shyy, W.: Fluid–structure interaction for aeroelastic applications. Prog. Aerosp. Sci. 40, 535–558 (2004)
Benaouicha, M., Astolfi, J.A., Ducoin, A.: A Numerical study of cavitation induced vibration. In: Proceedings of the ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. Bellevue, Washington, USA, 1–8 (2010)
Ryzhakov, P.B., Rossi, R., Idelsohn, S.R., et al.: A monolithic Lagrangian approach for fluid–structure interaction problems. Comput. Mech. 46, 883–899 (2010)
Farhat, C., vander Zee, K., Geuzaine, Ph: Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear aeroelasticity. Comput. Methods Appl. Mech. Eng. 195, 1973–2001 (2006)
Campbell, R.L., Paterson, E.G.: Fluid–structure interaction analysis of flexible turbomachinery. J. Fluids Struct. 27, 1376–1391 (2011)
Michler, C., Hulshoff, S.J., van Brummelen, E.H., et al.: A monolithic approach to fluid–structure interaction. Comput. Fluids 33, 839–848 (2004)
Causin, P., Gerbeau, J.F., Nobile, F.: Added-mass effect in the design of partitioned algorithms for fluid–structure problems. Comput. Methods Appl. Mech. Eng. 194, 4506–4527 (2005)
Young, Y.L., Chae, E.J., Akcabay, D.T.: Hybrid algorithm for modeling of fluid–structure interaction in incompressible viscous flows. Acta Mech. Sin. 28, 1030–1041 (2012)
Matthies, H.G., Steindorf, H.: Partitioned strong coupling algorithms for fluid–structure interaction. Comput. Struct. 81, 805–812 (2003)
Belanger, F., Paidoussis, M.P., Langre, E.: Time-marching analysis of fluid-coupled systems with large added mass. AIAA J. 33, 752–757 (1995)
Forster, C., Wall, W.A., Ramm, E.: Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 196, 1278–1293 (2007)
Grekula, M., Bark, G.: Experimental study of cavitation in a Kaplan model turbine. In: Proceedings of 4th International Symposium on Cavitation, Pasadena, Ca, USA (2001)
Sato, K., Shimojo, S.: Detailed observations on a starting mechanism for shedding of cavitation cloud. In: Proceedings of 5th International Symposium on Cavitations, Japan (2003)
Amromin, E.: Development and validation of CFD models for initial stages of cavitation. J. Fluids Eng. 136, 1–33 (2014)
Arakeri, V.H., Acosta, A.J.: Viscous effects in the inception of cavitation on axisymmetric bodies. ASME J. Fluid Eng. 95, 519–527 (1973)
Foeth, E.J., Van Doorne, C.W.H., Van Terwisga, T., et al.: Time resolved PIV and flow visualization of 3D sheet cavitation. Exp. Fluids 40, 503–513 (2006)
Stutz, B., Reboud, J.L.: Two-phase flow structure of sheet cavitations. Phys. Fluids 9, 3678–3686 (1997)
Ji, B., Luo, X., Wu, Y., et al.: Partially-averaged Navier–Stokes method with modified k-e model for cavitating flow around a marine propeller in a non-uniform wake. Int. J. Heat Mass Transf. 55, 6582–6588 (2012)
Li, X., Wang, G., Zhang, M., et al.: Structures of supercavitating multiphase flows. Int. J. Therm. Sci. 47, 1263–1275 (2008)
Long, X., Zhang, J., Wang, Q., et al.: Experimental investigation on the performance of jet pump cavitation reactor at different area ratios. Exp. Therm. Fluid Sci. 78, 309–321 (2016)
Fukaya, M., Ono, S., Udo, R.: Prediction of cavitation intensity in pumps based on propagation analysis of bubble collapse pressure using multi-point vibration acceleration method. Int. J. Fluid Mach. Syst. 2, 165–171 (2009)
Ducoin, A., Astolfi, J.A., Gobert, M.-L.: An experimental study of boundary-layer transition induced vibrations on a hydrofoil. J. Fluids Struct. 32, 37–51 (2012)
Wu, Q., Huang, B., Wang, G.: Experimental and numerical investigation of hydroelastic response of a flexible hydrofoil in cavitating flow. Int. J. Multiph. Flow 74, 19–33 (2015)
Leroux, J.B., Coutier-Delgosha, O., Astolfi, J.A.: A joint experimental and numerical study of mechanisms associated to instability of partial cavitation on two-dimensional hydrofoil. Phys. Fluids 17, 1–20 (2005)
Akcabay, D.T., Chae, E.J., Young, Y.L., et al.: Cavity induced vibration of flexible hydrofoils. J. Fluids Struct. 49, 463–484 (2014)
Zhang, B.: Physical and numerical investigation of unsteady cavitating flow mechanism and hydrodynamic characteristics. [Ph.D. Thesis], Beijing Institute of Technology, China (2009)
Luo, X.W., Ji, B., Zhang, Y., et al.: Cavitating flow over a mini hydrofoil. Chin. Phys. Lett. 29, 016401 (2012)
Dular, M., Khlifa, I., Fuzier, S., et al.: Scale effect on unsteady cloud cavitation. Exp. Fluids 53, 1233–1250 (2012)
Wang, G., Liu, S., Shintani, M., et al.: Study on cavitation damage characteristics around a hollow-jet valve. JSME Int. J. Ser. B 42, 649–658 (1999)
Wang, G.Y., Senocak, I., Shyy, W., et al.: Dynamics of attached turbulent cavitating flows. Prog. Aerosp. Sci. 37, 551–581 (2001)
Kim, D.J., Sung, H.J., Choi, C.H., et al.: Cavitation instabilities of an inducer in a cryogenic pump. Acta Astronaut. 132, 19–24 (2017)
Ji, B., Luo, X.W., Wu, Y.L., et al.: Numerical and experimental study on unsteady shedding of partial cavitation. Mod. Phys. Lett. B 24, 1441–1444 (2010)
Huang, B., Wang, G.: Experimental and numerical investigation of unsteady cavitating flows through a 2D hydrofoil. Sci. China Tech. Sci. 54, 1801–1812 (2011)
Peng, X.X., Ji, B., Cao, Y., et al.: Combined experimental observation and numerical simulation of the cloud cavitation with U-type flow structures on hydrofoils. Int. J. Multiph. Flow 79, 10–22 (2016)
Wu, Q., Wang, G.Y., Huang, B., et al.: Experimental investigation of the flow-induced vibration of hydrofoils in cavitating flows. J. Phys. Conf. Ser. 656, 012105 (2015)
Huang, B., Young, Y.L., Wang, G.Y., et al.: Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation. J. Fluids Eng. 135, 071301 (2013)
Kato, H., Konno, A., Maeda, M., et al.: Possibility of quantitative prediction of cavitation erosion without model test. ASME J. Fluids Eng. 118, 582–588 (1996)
Kirschner, I.N., Fine, N.E., Uhlman, J.S., et al.: Numerical modeling of supercavitating flows. Technical report. DTIC (2001)
Semenenko, V.N.: Artificial supercavitation: physics and calculation. RTO AVT/VKI special course: supercavitating flows, von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese, Belgium, 12–16 (2001)
Shen, Y., Dimotakis, P.: The influence of surface cavitation on hydrodynamic forces. In: Proceedings of 22nd ATTC, St. Johns, 44–53 (1989)
Ducoin, A., Huang, B., Young, Y. L.: Y.L.: Numerical modeling of unsteady cavitating flows around a stationary hydrofoil. Int. J. Rotating Mach. Mach. 2012, 215678, 1–17 (2012)
Luo, X.W., Ji, B., Peng, X.X., et al.: Numerical simulation of cavity shedding from a three-dimensional twisted hydrofoil and induced pressure fluctuation by large-eddy simulation. ASME J. Fluids Eng. Trans. 134, 041202 (2012)
Zwart, P., Gerber, A., Belamri, T.: A two-phase flow model for predicting cavitation dynamics. In: Fifth International Conference on Multiphase Flow, Yokohama, Japan (2004)
Ducoin, A., Huang, B., Young, Y.L.: Numerical modeling of unsteady cavitating flows around a stationary hydrofoil. Int. J. Rotating Mach. Article 2012, (2012)
Huang, B.,Ducoin, A.,Young,Y.L.:Evaluation of cavitation models for prediction of transient cavitating flows around a pitching hydrofoil. In: Proceedings of 8th International Symposium on Cavitation, Singapore (2012)
Launder, B.E., Spalding, D.B.: The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3, 269–289 (1974)
Cho, Y.C., Du, W., Gupta, A., et al.: Surrogate-based modeling and dimension-reduction techniques for thermo-fluid and energy systems. In: Proceeding of the ASME/JSME 2011 8th Thermal Engineering Joint Conference, Honolulu, Hawaii, USA, March 13–17 (2011)
Hu, C., Wang, G., Chen, G., et al.: Surrogate model-based optimization for the headform design of an axisymmetric body. Ocean Eng. 107, 237–245 (2015)
Shyy, W., Cho, Y.-C., Du, W., et al.: Surrogate-based modeling and dimension reduction techniques for multi-scale mechanics problems. Acta. Mech. Sin. 27, 845–865 (2011)
Wu, Q., Wang, G.Y., Huang, B.: Parameter optimization and analysis of a filter-based density correction model. J. Ship Mech. 20, 789–798 (2016)
Crank, J., Nicolson, P.: A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Adv. Comput. Math. 6, 207–226 (1996)
Klostermann, J., Schaake, K., Schwarze, R.: Numerical simulation of a rising bubble by VOF with surface compression. Int. J. Numer. Methods Fluids 71, 960–982 (2013)
Theodorsen, T.: General theory of aerodynamic instability and the mechanism of flutter. National Advisory Committee for Aeronautics, Technical Report, No. 496 (1935)
Ducoin, A., Young, Y.L.: Hydroelastic response and stability of a hydrofoil in viscous flow. J. Fluids Struct. 38, 40–57 (2013)
Huang, B., Zhao, Y., Wang, G.: Large eddy simulation of turbulent vortex–cavitation interactions in transient sheet/cloud cavitating flows. Comput. Fluids 92, 113–124 (2014)
Young, Y.L., Motley, M.R., Yeung, R.W.: Three-dimensional numerical modeling of the transient fluid–structural interaction response of tidal turbines. J. Offshore Mech. Arctic Eng. 132, 011101 (2010)
Stenius, I., Rosen, A., Kuttenkeuler, J.: Hydroelastic interaction in panel-water impacts of high speed craft. Ocean Eng. 38, 371–381 (2011)
Chimakurthi, S.K., Tang, J., Palacios, R., et al.: Computational aeroelasticity framework for analyzing flapping wing micro air vehicles. AIAA J. 47, 1865–1878 (2009)
Ducoin, A.: Etude experimentale et numerique du chargement hydrodynamique des corps portants en regime transitoire avec prise en compte du couplage fluide structure. [Ph.D. Thesis], Ecole Centrale de Nantes, France (2008) (in French)