Dynamics of blood flow: modeling of the Fåhræus–Lindqvist effect

Journal of Biological Physics - Tập 41 Số 3 - Trang 313-326 - 2015
Rachid Chebbi1
1Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates

Tóm tắt

Từ khóa


Tài liệu tham khảo

Fåhræus, R.: The suspension stability of blood. Physiol. Rev. 9, 241–274 (1929)

Fåhræus, R., Lindqvist, T.: The viscosity of the blood in narrow capillary tubes. Am. J. Physiol. 96(562–568) (1931)

Fournier, R.L.: Basic Transport Phenomena in Biomedical Engineering. CRC Press, Boca Raton (2012)

Goldsmith, H.L., Cokelet, G.R., Gaehtgens, P.: Robin Fåhræus: evolution of his concepts in cardiovascular physiology. Am. J. Physiol. Heart Circ. Physiol. 257, H1005–H1015 (1989)

Toksvang, L.N., Berg, R.M.G.: Using a classic paper by Robin Fåhræus and Torsten Lindqvist to teach basic hemorheology. Adv. Physiol. Educ. 37, 129–133 (2013)

Secomb, T.W., Pries, A.R.: Blood viscosity in microvessels: Experiment and theory. Comptes Rend. Phys. 14, 470–478 (2013)

Haynes, R.F.: Physical basis of the dependence of blood viscosity on tube radius. Am. J. Physiol. 198, 1193–1200 (1960)

Pries, A.R., Neuhaus, D., Gaehtgens, P.: Blood viscosity in tube flow: dependence on diameter and hematocrit. Am. J. Physiol. Heart Circ. Physiol. 263, H1770–H1778 (1992)

Obrist, D., Weber, B., Buck, A., Jenny, P.: Red blood cell distribution in simplified capillary networks. Phil. Trans. R. Soc. A 368, 2897–2918 (2010)

Pries, A.R., Secomb, T.W., Gaehtgens, P., Cross, J.F.: Blood flow in microvascular networks. Experiments and simulation. Circ. Res. 67, 826–834 (1990)

Bagchi, P.: Mesoscale simulation of blood flow in small vessels. Biophys. J. 92, 1858–1877 (2007)

Doddi, S.K., Bagchi, P.: Three-dimensional computational modeling of multiple deformable cells flowing in microvessels. Phys. Rev. E 79, 1–14 (2009)

Mansour, M.H., Bressloff, N.W., Shearman, C.P.: Red blood cell migration in microvessels. Biorheology 47, 73–93 (2010)

Quemada, D.: Rheology of concentrated disperse systems: A model for non-Newtonian shear viscosity in steady flows. Rheol. Acta 17, 632–642 (1978)

Phillips, R.J., Armstrong, R.C., Brown, R.A.: A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Phys. Fluids 4, 30–40 (1992)

Bressloff, N.W., Mansour, M.H., Shearman, C.P.: Microvascular cell depletion model. IFMBE Proc. 25/IV, 2095–2098 (2009)

Sharan, M., Popel, A.S.: A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall. Biorheology 38, 415–428 (2001)

Azelvandre, F., Oiknine, C.: Effet Fåhræus et effet Fåhræus-Lindqvist: Résultats expérimentaux et modèles théoriques. Biorheology 13, 325–335 (1976)

Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. John Wiley, New York (2007)

Charm, S.E., Kurland, G.S.: Blood Flow and Microcirculation. John Wiley, New York (1974)

Gaehtgens, P.: Flow of blood through narrow capillaries: rheological mechanisms determining capillary hematocrit and apparent viscosity. Biorheology 17, 183–189 (1980)

Lipowsky, H.H., Zweifach, B.W.: Network analysis of microcirculation of cat mesentery. Microvasc. Res. 7, 73–83 (1974)