Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Động lực học truyền nhiệt chảy melting của nanofluid vi mô trong môi trường tác động của bộ truyền động điện từ với độ dày không đồng nhất và nguồn nhiệt không đồng đều
Tóm tắt
Trong nghiên cứu hiện tại, cơ chế lan truyền nhiệt melting trong chuyển động của chất lỏng vi mô được xem xét trên một bộ truyền động điện từ (đĩa Riga) với độ dày lớp không đều. Chất lỏng chứa các nanoparticle nhỏ dưới tác động của nguồn nhiệt không đồng nhất, bức xạ, sự di chuyển nhiệt và chuyển động ngẫu nhiên của các hạt nhỏ kết hợp với độ dẫn nhiệt biến đổi. Các phương trình vận chuyển được phát triển đã được giải quyết bằng phương pháp Pseudo-spectral sau khi được đơn giản hóa từ đạo hàm riêng sang đạo hàm thường. Những đóng góp từ các yếu tố vật lý khác nhau phát sinh từ phương trình chính được trình bày qua đồ thị và bảng nhằm thể hiện tác động của chúng đến các đại lượng không thứ nguyên. Các phát hiện cho thấy rằng sự truyền nhiệt ở giao diện rắn – lỏng tăng lên với sự tăng cường của bức xạ nhiệt, độ dày bề mặt và các tham số nguồn nhiệt, nhưng sự gia tăng trong điều kiện melting ngăn chặn sự lan truyền nhiệt tại bề mặt. Thêm vào đó, yếu tố sức cản bề mặt giảm với các tham số vật liệu cao hơn, số Hartmann đã điều chỉnh cùng với tham số độ dày bề mặt, trong khi hệ số ma sát được tăng cường bởi bậc số mũ của quy luật sức mạnh.
Từ khóa
#micropolar fluid #melting heat transfer #electromagnetic actuator #thermal radiation #heat sourceTài liệu tham khảo
Suganya, S., Muthtamilselvan, M., Abdalla, B.: Effects of radiation and chemical reaction on Cu-Al2O3/water hybrid flow past a melting surface in the existence of cross magnetic field. Ricerche Mat. 6, 155 (2021)
Fatunmbi, E.O., Salawu, S.O.: Thermodynamic second law analysis of magneto-micropolar fluid flow past nonlinear porous media with non-uniform heat source. Propuls. Power Res. 9(3), 281–288 (2020)
Reddy, G.V.R., Krishna, Y.H.: Soret and Dufour effects on MHD micropolar fluid flow over a linearly stretching sheet through a non-Darcy porous medium. Int. J. Appl. Mech. Eng. 23(2), 485–502 (2018)
Sandeep, N., Babu, M.J., Gupta, R.: Effect of radiation and viscous dissipation on stagnation-point flow of a micropolar fluid over a nonlinear stretching surface with suction/injection. J. Basic Appl. Res. Int. 7, 73–82 (2015)
Waqas, M., Farooq, M., Khan, M.I., Alsaedi, A., Hayat, T., Yasmeen, T.: Magnetohydromagnetic (MHD) mixed convection flow of micropolar liquid due to nonlinear stretched sheet with convective condition. Int. J. Heat Mass Trans. 102, 766–772 (2016)
Okoya, S.S., Hassan, A.R., Salawu, S.O.: On free convection flow of a moving vertical permeable plate with quadratic Boussinesq approximation and variable thermal conductivity. Heat Transf. Res. 52(7), 55–66 (2021)
Shamshuddin, M.D., Salawu, S.O., Ogunseye, H.A., Mabood, F.: Dissipative Power-law fluid flow using spectral quasi linearization method over an exponentially stretchable surface with Hall current and power-law slip velocity. Int. Commun. Heat Mass Trans. 119, 104933 (2020)
Salawu, S.O., Fatunmbi, E.O., Ayanshola, M.A.: On the reactive-diffusion of a fourth-grade hydromagnetic fluid flow and thermal criticality in a plane Couette device. Results Eng. 8, 100169 (2020)
Fatunmbi, E.O., Salawu, S.O.: Analysis of hydromagnetic micropolar nanofluid flow past a nonlinear stretchable sheet and entropy generation with Navier slips. Int. J. Modell. Simul. 21, 1–11 (2021)
Salawu, S.O., Fatunmbi, E.O., Okoya, S.S.: MHD heat and mass transport of Maxwell Arrhenius kinetic nanofluid flow over stretching surface with nonlinear variable properties. Results Chem. 3, 100125 (2021)
Upreti, H., Pandey, A.K., Uddin, Z., Kumar, M.: Thermophoresis and Brownian motion effects on 3D flow of Casson nanofluid consisting microorganisms over a Riga plate using PSO: A numerical study. Chin. J. Phy. 78, 234–270 (2022)
Muthtamilselvan, M., Suganya, S., Al-Mdallal, Q.M.: Stagnation-point flow of the Williamson nanofluid containing gyrotactic micro-organisms. Proc. Natl. Acad. Sci. India Sect. A: Phy. Sci. 91, 633–648 (2021)
Xuan, Y., Li, Q.: Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow 21, 58–64 (2000)
Ferdows, M., Shamshuddin, M.D., Salawu, S.O., Zaimi, K.: Numerical simulation for the steady nanofluid boundary layer flow over a moving plate with suction and heat generation. SN Appl. Sci. 3, 264–275 (2021)
Makinde, O.D., Animasaun, I.L.: Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution. Int. J. Thermal Sci. 109, 159–171 (2016)
Haneef, M., Nawaz, M., Alharbi, S.O., Elmasry, Y.: Cattaneo–Christov heat flux theory and thermal enhancement in hybrid nano Oldroyd-B rheological fluid in the presence of mass transfer. Int. Commun. Heat Mass Trans. 126, 105344 (2021)
Alizadeh, M., Dogonchi, A.S., Ganji, D.D.: Micropolar nanofluid flow and heat transfer between penetrable walls in the presence of thermal radiation and magnetic field. Case Study Therm. Eng. 12, 319–332 (2018)
Salawu, S.O., Okoya, S.S.: On criticality for a branched-chain thermal reactive-diffusion in a cylinder. Combust. Sci. Technol. 192, 1–16 (2020)
Salawu, S.O.: Two-step exothermic reaction-diffusion of hydromagnetic Prandtl-Eyring viscous heating fluid in a channel. Int. J. Thermofluids 17, 100300 (2023)
Iqbal, Z., Mehmood, Z., Ahmad, B.: Numerical study of entropy generation and melting heat transfer on MHD generalised non-Newtonian fluid (GNF): Application to optimal energy. Pramana-J. Phys. 90, 64–72 (2018)
Singh, K., Pandey, A.K., Kumar, M.: Numerical solution of micropolar fluid flow via stretchable surface with chemical reaction and melting heat transfer using Keller-Box method. Propuls. Power Res. 10(2), 194–207 (2021)
Yusuf, T.A., Akaje, T.W., Salawu, S.O., Gbadeyan, J.A.: Arrhenius activation energy effect on a stagnation point slippery MHD Casson nanofluid flow with entropy generation and melting heat transfer, Defect and Diffusion. Forum 408, 1–18 (2021)
Rashid, M., Nadeem, S., Shahzadi, I.: Permeability impact on electromagnetohydrodynamic flow through corrugated walls of microchannel with variable viscosity. Adv. Mech. Engin. 12(7), 1–11 (2020)
Gailitis, A., Lielausis, O.: On a possibility to reduce the hydromagnetic resistance of a plate in an electrolyte. Appl. Magnetohdrodyn Rep. Phys. Inst. Riga 12, 143–149 (1961)
Ahmad, A., Asghar, S., Afzal, S.: Flow of nanofluid past a RIga plate. J. Magnet. Magnet. Mater. 402, 44–48 (2016)
Abbas, N., Malik, M.Y., Nadeem, S.: Transportation of magnetized micropolar hybrid nanomaterial fluid flow over a Riga surface surface. Comput. Methods Programs Biomed. 185(1), 105136 (2019)
Fatunmbi, E.O., Adeosun, A.T.: Nonlinear radiative Eyring-Powell nanofluid flow along a vertical Riga plate with exponential varying viscosity and chemical reaction. Int. Commun. Heat Mass Transf. 119, 104913 (2020)
Fatunmbi, E.O., Adeosun, A.T., Salawu, S.O.: Entropy analysis of nonlinear radiative Casson nanofluid transport over an electromagnetic actuator with temperature-dependent properties. Part. Differ. Equ. Appl. Math. 4, 100152 (2021)
Singh, K., Pandey, A.K., Kumar, M.: Slip flow of micropolar fluid through a permeable wedge due to the effects of chemical reaction and heat source/sink with Hall and ion-slip currents: an analytic approach. Propuls. Power Res. 9(3), 289–303 (2020)
Hayat, T., Imtiaz, M., Alsaedi, A.: Melting heat transfer in the MHD flow of Cu-water nanofluid with viscous dissipation and joule heating. Adv. Powd. Technol. 27, 13018 (2016)
Salawu, S.O.: Evaluation of thermo-diffusion and diffusion-thermo phenomenon on the reactive micropolar fluid motion over an extending device. Int. J. Model. Simul. 21, 88514 (2023)
Devi, S.P.A., Prakash, M.: Temperature dependent viscosity and thermal conductivity effects on hydromagnetic flow over a slendering stretching sheet. J. Nigerian Math. Soc. 34, 318–330 (2015)
Farooq, M., Anjum, A., Hayat, T., Alsaedi, A.: Melting heat transfer in the flow over a variable thicked Riga plate with homogeneous-heterogeneous reactions. J. Mol. Liquids 23, 10123 (2016)
Sharma, R.P., Acharya, N., Das, K.: On the impact of variable thickness and melting transfer of heat on magnetohydrodynamics nanofluid flow past a slendering stretching sheet. Indian J. Geo Mar. Sci. 49, 641–648 (2014)
Kumaran, G., Makinde, O.D., Sivaraj, R.: Unsteady magnetohydrodynamic flow past a slendering stretching surface with thermophoresis and brownian motion, Defect and Diffusion. Forum 387, 653–665 (2021)
Fatunmbi, E.O., Adeniyan, A.: Heat and mass transfer in MHD micropolar fluid flow over a stretching sheet with velocity and thermal slip conditions, Open J. of. Fluid Dyn. 8, 195–215 (2018)
Pandey, A.K.: Effect of natural convection on 3D MHD flow of MoS2-GO/H2O via porous surface due to multiple slip mechanisms. J. Taibah Uni. Sci. 16(1), 749–762 (2022)
Fatunmbi, E.O., Ogunseye, H.A., Sibanda, P.: Magnetohydrodynamic micropolar fluid flow in a porous medium with multiple slip conditions. Int. Commun. Heat Mass Transf. 115, 104577 (2020)
Jena, S.K., Mathur, M.N.N.: Similarity solutions for laminar free convection flow of a thermomicropolar fluid past a non-isothermal flat plate. Int. J. Eng. Sci. 19, 1431–1439 (1981)
Ahmadi, G.: Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate. Int. J. Eng. Sci. 14, 639–646 (1976)
Peddieson, J.: An application of the micropolar model to the calculation of a turbulent shear flow. Int. J. Eng. Sci. 10, 23–32 (1972)
Yucel, A.: Mixed convection in micropolar fluid flow over a horizontal plate with surface mass transfer. Int. J. Eng. Sci. 27, 1593–1602 (1989)
Ishak, A.: Thermal boundary layer flow over a stretching sheet in a micropolar fluid with radiation effect. Meccanica 45, 367–373 (2010)
Sharma, R.P., Ibrahim, S.M., Mishra, S.R., Tinker, S.: Impact of dissipative heat and radiative heat on MHD viscous flow through a slandering stretching sheet with temperature?dependent variable viscosity. Heat Transf. 22, 1–20 (2021)
Hayat, T., Qayyum, S., Alsaedi, A., Ahmad, B.: Mechanisms of double stratification and magnetic field in flow of third grade fluid over a slendering stretching surface with variable thermal conductivity. Results Phys. 8, 819–828 (2018)
Khan, M., Malik, M.Y., Salahuddin, T.: Heat generation and solar radiation effects on Carreau nanofluid over a stretching sheet with variable thickness: Using coefficients improved by Cash and Carp. Results Phys. 7, 2512–2519 (2017)
Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, 10 (2000)
Motsa, S.S.: On the practical use of the spectral homotopy analysis method and local linearization method for unsteady boundary-layer flows caused by an impulsively stretching plate. Numer Algor. 66, 865–883 (2014)
Singh, K., Kumar, M.: Melting and heat absorption effects in boundary layer stagnation-point flow towards a stretching sheet in a micropolar fluid. Ain Shams Eng. J. 9, 861–868 (2018)
Bachok, N., Ishak, A., Pop, L.: Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet. Phys. Lett. A 374, 4075–4079 (2010)
Abbas, T., Ayub, M., Bhatti, M.M., Rashidi, M.M., Ali, M.E.: Entropy generation on nanofluid flow through a horizontal Riga plate. Entropy 18, 60223 (2016)
