Dynamics for a Three-Species Predator-Prey Model with Density-Dependent Motilities

Shuyan Qiu1, Chunlai Mu2, Xinyu Tu3
1School of Sciences, Southwest Petroleum University, Chengdu, People’s Republic of China
2College of Mathematics and Statistics, Chongqing University, Chongqing, People’s Republic of China
3School of Mathematics and Statistics, Southwest University, Chongqing, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alikakos, N.D.: $$L^p$$ bounds of solutions of reaction-diffusion equations. Comm. Partial Diff. Equ. 4, 827–868 (1979)

Amann, H.: Dynamic theory of quasilinear parabolic equations III. Global existence. Math. Z. 202, 219–250 (1989)

Amann, H.: Dynamic theory of quasilinear parabolic equations II. Reaction-diffusion systems. Diff. Integr. Equ. 3, 13–75 (1990)

Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In Function spaces, differential operators and nonlinear analysis (Friedrichroda, 1992), volume 133 of Teubner-Texte Math., pages 9-126. Teubner, Stuttgart (1993)

Bai, X., Winkler, M.: Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics. Indiana Univ. Math. J. 65, 553–583 (2016)

Chakraborty, A., Singh, M., Lucy, D., Ridland, P.: Predator-prey model with preytaxis and diffusion. Math. Comput. Model. 46, 482–498 (2007)

Ainseba, B.E., Bendahmane, M., Noussair, A.: A reaction-diffusion system modeling predator-prey with prey-taxis. Nonlinear Anal. Real World Appl. 9, 2086–2105 (2008)

Lee, J.M., Hilllen, T., Lewis, M.A.: Continuous traveling waves for prey-taxis. Bull. Math. Biol. 70, 654–676 (2008)

Lee, J.M., Hilllen, T., Lewis, M.A.: Pattern formation in prey-taxis systems. J. Biol. Dyn. 3, 551–573 (2009)

Li, C., Wang, X., Shao, Y.: Steady states of a predator-prey model with prey-taxis. Nonlinear Anal. 97, 155–168 (2014)

He, X., Zheng, S.: Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis. Appl. Math. Lett. 49, 73–77 (2015)

Hirata, M., Kurima, S., Mizukami, M., Yokota, T.: Boundedness and stabilization in a two-dimensional two-species chemotaxis-Navier-Stokes system with competitive kinetics. J. Diff. Equ. 263, 470–490 (2017)

Holling, C.: The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entom. Soc. Can. 45, 1–60 (1965)

Hsiao, L., De Mottoni, P.: Persistence in reacting-diffusing systems: Interaction of two predators and one prey. Nonlinear Anal. 11, 877–891 (1987)

Jin, H., Wang, Z.: Global stability of prey-taxis systems. J. Diff. Equ. 262, 1257–290 (2017)

Jin, H., Kim, Y., Wang, Z.A.: Boundedness, stabilization, and pattern formation driven by densitysuppressed motility. SIAM J. Appl. Math. 78, 1632–1657 (2018)

Jin, H., Wang, Z.: Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion. Eur. J. Appl. Math. (2021). https://doi.org/10.1017/S0956792520000248

Kareiva, P., Odell, G.T.: Swarms of predators exhibit “preytaxis’ if individual predators use area-restricted search. Am. Nat. 130, 233–270 (1987)

Lankeit, J., Wang, Y.: Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discret. Contin. Dyn. Syst. 37, 6099–6121 (2017)

Lotka, A.J.: Elements of Physical Biology. Williams and Wilkins Co., Baltimore (1925)

Lin, J., Wang, W., Zhao, C., Yang, T.: Global dynamics and traveling wave solutions of two predators-one prey models. Discret. Contin. Dyn. Syst. Ser. B 20, 1135–1154 (2015)

Loladze, I., Kuang, Y., Elser, J.J., Fagan, W.F.: Competition and stoichiometry: coexistence of two predators on one prey. Theo. Popul. Biol. 65, 1–15 (2004)

Pang, P., Wang, M.: Strategy and stationary pattern in a three-species predator-prey model. J. Diff. Equ. 200, 245–273 (2004)

Porzio, M., Vespri, V.: H$$\ddot{o}$$lder estimates for local solutions of some doubly nonlinear degenerate parabolic equations. J. Diff. Equ. 103, 146–178 (1993)

Tao, Y.: Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis. Nonlinear Anal. Real World Appl. 11, 2056–2064 (2010)

Tello, J.I., Wrzosek, D.: Predator-prey model with diffusion and indirect prey-taxis. Math. Model. Method. Appl. Sci. 26, 2129–62 (2016)

Tona, T., Hieu, N.: Dynamics of species in a model with two predators and one prey. Nonlinear Anal. 74, 4868–4881 (2011)

Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 118, 558–560 (1926)

Wang, J., Wang, M.: Boundeness and global stability of the two-predator and one-prey models with nonlinear prey-taxis. Z. Angew. Math. Phys. 69, 63 (2018)

Wang, J., Wang, M.: The diffusive Beddington-DeAngelis predator-prey model with nonlinear prey-taxis and free boundary. Math. Method. Appl. Sci. 41, 6741–6762 (2018)

Wang, J., Wang, M.: Global solution of a diffusive predator-prey model with prey-taxis. Comput. Math. Appl. 77, 2676–94 (2019)

Wang, J., Wang, M.: The dynamics of a predator-prey model with diffusion and indirect prey-taxis. J. Dyn. Differ. Equ. (2019). https://doi.org/10.1007/s10884-019-09778-7

Wang, K., Wang, Q., Yu, F.: Stationary and time-periodic patterns of two-predator and one-prey systems with prey-taxis. Discret. Contin. Dyn. Syst. 37(1), 505–543 (2017)

Wang, Q., Gai, C., Yan, J.: Qualitative analysis of a Lotka-Volterra competition system with advection. Discret. Contin. Dyn. Syst. 35, 1239–1284 (2015)

Wang, Q., Song, Y., Shao, L.: Nonconstant positive steady states and pattern formation of 1D prey-taxis systems. J. Nonlinear Sci. 1–27,(2016)

Wang, X., Wang, W., Zhang, G.: Global bifurcation of solutions for a predator-prey model with prey-taxis. Math. Method. Appl. Sci. 38, 431–443 (2015)

Wang, Z.A., Xu, J.: On the Lotka-Volterra competition system with dynamical resources and density-dependent diffusion. J. Math. Biol. (2021). https://doi.org/10.1007/s00285-021-01562-w

Winkler, M.: Asymptotic homogenization in a three-dimensional nutrient taxis system involving food-supported proliferation. J. Diff. Equ. 263, 4826–69 (2017)

Wu, S., Shi, J., Wu, B.: Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis. J. Diff. Equ. 260, 5847–74 (2016)

Xiang, T.: Global dynamics for a diffusive predator-prey model with prey-taxis and classical Lotka-Volterra kinetics. Nonlinear Anal. Real World Appl. 39, 278–99 (2018)