Dynamics and coherence resonance in a thermosensitive neuron driven by photocurrent*

Chinese Physics B - Tập 29 Số 9 - Trang 098704 - 2020
Ying Xu1,2, Minghua Liu2,3, Zhigang Zhu2, Jun Ma2,4
1Department of Physics, Central China Normal University, Wuhan 430079, China
2Department of Physics, Lanzhou University of Technology, Lanzhou 730050, China
3Electrical Engineering College, Northwest Minzu University, Lanzhou 730124, China
4School of Science, Chongqing University of Posts and Telecommunications, Chongqing 430065, China

Tóm tắt

A feasible neuron model can be effective to estimate the mode transition in neural activities in a complex electromagnetic environment. When neurons are exposed to electromagnetic field, the continuous magnetization and polarization can generate nonlinear effect on the exchange and propagation of ions in the cell, and then the firing patterns can be regulated completely. The conductivity of ion channels can be affected by the temperature and the channel current is adjusted for regulating the excitability of neurons. In this paper, a phototube and a thermistor are used to the functions of neural circuit. The phototube is used to capture external illumination for energy injection, and a continuous signal source is obtained. The thermistor is used to percept the changes of temperature, and the channel current is changed to adjust the excitability of neuron. This functional neural circuit can encode the external heat (temperature) and illumination excitation, and the dynamics of neural activities is investigated in detail. The photocurrent generated in the phototube can be used as a signal source for the neural circuit, and the thermistor is used to estimate the conduction dependence on the temperature for neurons under heat effect. Bifurcation analysis and Hamilton energy are calculated to explore the mode selection. It is found that complete dynamical properties of biological neurons can be reproduced in spiking, bursting, and chaotic firing when the phototube is activated as voltage source. The functional neural circuit mainly presents spiking states when the photocurrent is handled as a stable current source. Gaussian white noise is imposed to detect the occurrence of coherence resonance. This neural circuit can provide possible guidance for investigating dynamics of neural networks and potential application in designing sensitive sensors.

Từ khóa


Tài liệu tham khảo

Schwiening, 2012, J. Physiol., 590, 2571, 10.1113/jphysiol.2012.230458

Hindmarsh, 1984, Proc. R. Soc. B Biol. Sci., 221, 87, 10.1098/rspb.1984.0024

Jia, 2017, Cogn. Neurodyn., 11, 189, 10.1007/s11571-017-9422-8

Zhu, 2019, Cogn. Neurodyn., 13, 75, 10.1007/s11571-018-9503-3

Wu, 2019, Appl. Math. Comput., 347, 590, 10.1016/j.amc.2018.10.087

Wu, 2020, Sci. Chin. Technol. Sci., 63, 625, 10.1007/s11431-019-9670-1

Cunningham, 2004, Proc. Natl. Acad. Sci. USA, 101, 7152, 10.1073/pnas.0402060101

Wu, 2019, Nonlin. Dyn., 96, 1895, 10.1007/s11071-019-04892-z

Han, 2015, Phys. Rev. E, 92, 10.1103/PhysRevE.92.012911

Han, 2019, Commun. Nonlin. Sci. Numer. Simulat., 72, 16, 10.1016/j.cnsns.2018.12.007

Allen, 2017, Neuron, 96, 697, 10.1016/j.neuron.2017.09.056

Chung, 2015, CSH Perspect. Biol., 7, 10.1101/cshperspect.a020370

Vasile, 2017, Brain Struct. Funct., 222, 2017, 10.1007/s00429-017-1383-5

Huguet, 2016, Biophys. J., 111, 452, 10.1016/j.bpj.2016.05.051

Tang, 2017, Sci. Chin. Technol. Sci., 60, 1011, 10.1007/s11431-016-0293-9

Guo, 2017, Complexity, 2017, 10.1155/2017/4631602

Wang, 2017, Complexity, 2017, 10.1155/2017/5436737

Bekkers, 2003, Curr. Biol., 13, R433, 10.1016/S0960-9822(03)00363-4

Yue, 2017, Nonlin. Dyn., 90, 2893, 10.1007/s11071-017-3850-1

Uzun, 2017, Physica A, 486, 386, 10.1016/j.physa.2017.05.049

Yilmaz, 2016, Physica A, 444, 538, 10.1016/j.physa.2015.10.054

Yang, 2017, Chaos, 27, 10.1063/1.4999100

Gong, 2016, Biosyst., 150, 132, 10.1016/j.biosystems.2016.09.006

Song, 2015, Sci. Chin. Technol. Sci., 58, 1007, 10.1007/s11431-015-5826-z

Song, 2019, Nonlin. Dyn., 96, 2341, 10.1007/s11071-019-04925-7

Song, 2018, Nonlin. Dyn., 94, 141, 10.1007/s11071-018-4349-0

Zhao, 2017, Sci. Rep., 7, 6760, 10.1038/s41598-017-07051-9

Kim, 2019, Antioxidants, 8, 121, 10.3390/antiox8050121

Wang, 2018, Int. J. Mod. Phys. B, 32, 10.1142/S0217979218300037

Ma, 2019, J. Zhejiang Univ. Sci. A, 20, 639, 10.1631/jzus.A1900273

Ma, 2015, Sci. Chin. Technol. Sci., 58, 2038, 10.1007/s11431-015-5961-6

Chua, 2011, Appl. Phys. A, 102, 765, 10.1007/s00339-011-6264-9

Wang, 2017, Nat. Mater., 16, 101, 10.1038/nmat4756

Muthuswamy, 2010, Int. J. Bifur. Chaos, 20, 1335, 10.1142/S0218127410026514

Kim, 2012, IEEE Tr. Circ. Syst., 59, 2422, 10.1109/TCSI.2012.2188957

Xu, 2018, Nonlin. Dyn., 92, 1395, 10.1007/s11071-018-4134-0

Serb, 2020, Sci. Rep., 10, 2590, 10.1038/s41598-020-58831-9

Park, 2015, Sci. Rep., 5, 10.1038/srep10123

Bao, 2020, Nonlin. Dyn., 100, 937, 10.1007/s11071-020-05529-2

Lu, 2019, Sci. Chin. Technol. Sci., 62, 427, 10.1007/s11431-017-9217-x

Jin, 2019, Sci. Chin. Technol. Sci., 62, 2113, 10.1007/s11431-018-9423-x

Ge, 2019, Euro. Phys. J.-Spec. Top., 228, 2455, 10.1140/epjst/e2019-900006-2

Xu, 2019, Nonlin. Dyn., 95, 3237, 10.1007/s11071-018-04752-2

Usha, 2019, Nonlin. Dyn., 96, 2115, 10.1007/s11071-019-04909-7

Guo, 2017, Chaos Solitons & Fractals., 105, 120, 10.1016/j.chaos.2017.10.019

Qin, 2018, Physica A, 501, 141, 10.1016/j.physa.2018.02.063

Abdelouahab, 2014, Int. J. Bifur. Chaos, 24, 10.1142/S0218127414300237

Xu, 2019, Front. Inform. Technol. Electron. Eng., 20, 571, 10.1631/FITEE.1800499

Wickramasinghe, 2013, Phys. Rev. E, 88, 10.1103/physreve.88.062911

Yao, 2019, Nonlin. Dyn., 96, 205, 10.1007/s11071-019-04784-2

Pavlov, 2009, 5263, 10.1109/CDC.2009.5400275

Liu, 2019, Int. J. Mod. Phys. B, 33, 10.1142/S0217979219501704

Gambuzza, 2015, IEEE Tr. Circ. Syst. I, 62, 1175, 10.1109/TCSI.2015.2395631

Gambuzza, 2017, IEEE Tr. Circ. Syst. I, 64, 2124, 10.1109/TCSI.2017.2692519

Zhang, 2020, AEU-Int. J. Electron. Commun., 115, 10.1016/j.aeue.2019.153050

Zhang, 2020, 10.1007/s11431-019-1547-5

Xu, 2013, Science, 339, 1290, 10.1126/science.1229534

Landahl, 1939, Psychometrika, 4, 255, 10.1007/BF02287938

Yonezu, 1989, Electr. Lett., 25, 670, 10.1049/el:19890454

Zhao, 2018, Neurocomput., 314, 207, 10.1016/j.neucom.2018.06.062

Liu, 2020, 10.1631/FITEE.1900606

Xu, 2019, Cogn. Neurodyn., 13, 601, 10.1007/s11571-019-09547-8

Peixoto, 2020, Front. Computat. Neurosci., 14, 5, 10.3389/fncom.2020.00005

Zhao, 2005, J. Physiol., 564, 245, 10.1113/jphysiol.2004.075473

Bolton, 1981, J. Neurol. Neurosur. Psych., 44, 407, 10.1136/jnnp.44.5.407

Fitzhugh, 1961, Biophys. J., 1, 445, 10.1016/S0006-3495(61)86902-6

Kyprianidis, 2012, WSEAS Tran. Syst., 11, 516, 10.1007/s11431-017-9309-9

Du, 2019, Sci. Chin. Technol. Sci., 62, 1141, 10.1007/s11431-016-6046-x

Xiao, 2016, Sci. Chin. Technol. Sci., 59, 1943, 10.1103/PhysRevLett.78.775

Pikovsky, 1997, Phys. Rev. Lett., 78, 775, 10.1016/j.chaos.2005.09.021

Perc, 2007, Chaos Solitons & Fractals., 31, 64, 10.1103/PhysRevE.72.016207

Perc, 2005, Phys. Rev. E, 72, 10.1063/1.2900402

Sun, 2008, Chaos, 18, 10.1103/PhysRevE.94.042222

Li, 2016, Phys. Rev. E, 94, 10.1016/j.chaos.2016.09.015

Xu, 2016, Chaos Solitons Fractal., 92, 91, 10.1007/s11431-015-6001-2

Wang, 2016, Sci. Chin. Technol. Sci., 59, 371, 10.1063/1.4768729

Zhang, 2012, Chaos, 22, 10.1016/j.apm.2018.07.032

Liu, 2018, App. Math. Mod., 64, 249, 10.1140/epjb/e2008-00315-6

Valentia, 2008, Euro. Phys. J. B, 65, 443, 10.1063/1.5132280

Njitacke, 2020, Chaos, 30, 10.1007/s11571-020-09570-0

Wouapi, 2020, Cogn. Neurody., 14, 135, 10.1109/tfuzz.2020.2965890

Sun, 2020, 10.1109/tfuzz.2020. 2979129

Sun, 2020, 10.1109/tfuzz.2020.2979129

Sun, 2020, 10.1142/S0217979218300037

Wang, 2018, Int. J. Mod. Phys. B, 32, 10.1140/epjst/e2019-800193-8

Wang, 2019, Euro. Phys. J. Spec. Top., 228, 1907, 10.1113/jphysiol.1952.sp004719

Hodgkin, 1952, J. Physiol., 116, 497, 10.4196/kjpp.2011.15.6.371

Hyun, 2011, Korean J. Physiol. Pharmacol., 15, 371, 10.1088/1674-1056/ab43b9

Guo, 2019, Chin. Phys. B, 28, 10.1088/1674-1056/27/11/118707

Qu, 2018, Chin. Phys. B, 27, 10.1088/1674-1056/ab7441

Yuan, 2020, Chin. Phys. B, 29, 10.1142/S0217979218300037