Dynamical sequestration of the Moon-forming impactor in co-orbital resonance with Earth

Icarus - Tập 275 - Trang 239-248 - 2016
Stephen J. Kortenkamp1,2, William K. Hartmann1
1Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, AZ 85719-2395, United States
2Lunar and Planetary Lab, University of Arizona, 1629 E. University Blvd., Tucson, AZ 85721-0092, United States

Tài liệu tham khảo

Armytage, 2012, Silicon isotopes in lunar rocks: Implications for the Moon's formation and the early history of the Earth, Geochim. Cosmochim. Acta, 77, 504, 10.1016/j.gca.2011.10.032 Beauge, 2007, Co-orbital terrestrial planets in exoplanetary systems: A formation scenario, Astron. Astrophys., 463, 359, 10.1051/0004-6361:20066582 Belbruno, 2005, Where did the Moon come from, Astron. J., 129, 1724, 10.1086/427539 Belbruno, 2008, Formation of the Earth impactor and Moon Bottke, 2015, Dating the Moon-forming impact event with asteroidal meteorites, Science, 348, 321, 10.1126/science.aaa0602 Burke, 2014, Planetary candidates observed by Kepler IV: Planet sample from Q1-Q8 (22 months), Astrophys. J. Suppl., 210, 10.1088/0067-0049/210/2/19 Cameron, 1976, The origin of the Moon, 7, 120 Canup, 2004, Simulations of a late lunar-forming impact, Icarus, 168, 433, 10.1016/j.icarus.2003.09.028 Canup, 2008, Lunar-forming collisions with pre-impact rotation, Icarus, 196, 518, 10.1016/j.icarus.2008.03.011 Canup, 2012, Forming a moon with an Earth-like composition via a giant impact, Science, 338, 1052, 10.1126/science.1226073 Chambers, 1999, A hybrid symplectic integrator that permits close encounters between massive bodies, Mon. Not. R. Astron. Soc., 304, 793, 10.1046/j.1365-8711.1999.02379.x Chambers, 2001, Making more terrestrial planets, Icarus, 152, 205, 10.1006/icar.2001.6639 Chambers, 2013, Late-stage planetary accretion including hit-and-run collisions and fragmentation, Icarus, 224, 43, 10.1016/j.icarus.2013.02.015 Chambers, 1998, Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions, Icarus, 136, 304, 10.1006/icar.1998.6007 Christou, 2012, A population of main belt asteroids co-orbiting with Ceres and Vesta, Icarus, 217, 27, 10.1016/j.icarus.2011.10.016 Collins, 2009, Co-orbital oligarchy, Astron. J., 137, 3778, 10.1088/0004-6256/137/4/3778 Connors, 2002, Discovery of an asteroid and quasi-satellite in an Earth-like horseshoe orbit, Meteorit. Planet. Sci., 37, 1435, 10.1111/j.1945-5100.2002.tb01039.x Connors, 2004, Discovery of Earth's quasi-satellite, Meteorit. Planet. Sci., 39, 1251, 10.1111/j.1945-5100.2004.tb00944.x Cresswell, 2008, Three-dimensional simulations of multiple protoplanets embedded in a protostellar disc, Astron. Astrophys., 482, 677, 10.1051/0004-6361:20079178 Cresswell, 2009, On the growth and stability of Trojan planets, Astron. Astrophys., 493, 1141, 10.1051/0004-6361:200810705 de la Fuente Marcos, 2012, (309239) 2007 RW10: A large temporary quasi-satellite of Neptune, Astron. Astrophys., 545, L9, 10.1051/0004-6361/201219931 de la Fuente Marcos, 2012, Plutino (15810) 1994 JR1, an accidental quasi-satellite of Pluto, Mon. Not. R. Astron. Soc., 427, L85 Gallardo, 2006, Atlas of the mean motion resonances in the solar system, Icarus, 184, 29, 10.1016/j.icarus.2006.04.001 Goździewski, 2006, Trojan pairs in the HD 128311 and HD 82943 planetary systems?, Astrophys. J., 647, 573, 10.1086/505318 Halliday, 2008, A young Moon-forming giant impact at 70-110 million years accompanied by late-stage mixing, coreformation and degassing of the Earth, Philos. Trans. R. Soc. A, 366, 4163, 10.1098/rsta.2008.0209 Hartmann, 1986, Moon origin: The impact trigger hypothesis, 579 Hartmann, 2014, The giant impact hypothesis: past, resent (and future?), Philos. Trans. R. Soc. A, 372, 10.1098/rsta.2013.0249 Hartmann, W.K. and Davis, D.R., 1974. Satellite-sized planetesimals, I.A.U. Colloquium 28, “Planetary Satellites,” August 18–21, Cornell University (abstract). Hartmann, 1975, Satellite-sized planetesimals and lunar origin, Icarus, 24, 504, 10.1016/0019-1035(75)90070-6 Herwartz, 2014, Identification of the giant impactor Theia in lunar rocks, Science, 344, 1146, 10.1126/science.1251117 Humayun, 1995, Precise determination of the isotopic composition of potassium: Application to terrestrial rocks and lunar soils, Geochim. Cosmochim. Acta, 59, 2115, 10.1016/0016-7037(95)00131-X Jacobson, 2014, Highly siderophile elements in Earth's mantle as a clock for the Moon-forming impact, Nature, 508, 84, 10.1038/nature13172 Kaib, 2015, The feeding zones of terrestrial planets and insights into Moon formation, Icarus, 252, 161, 10.1016/j.icarus.2015.01.013 Kaib, 2015, Brief follow-up on recent studies of Theia's accretion, Icarus, 258, 14, 10.1016/j.icarus.2015.06.019 Kinoshita, 2007, Quasi-satellites of Jupiter, Celestial Mech. Dyn. Astron., 98, 181, 10.1007/s10569-007-9074-9 Kleine, 2004, 182Hf-182W isotope systematics of chondrites, eucrites, and martian meteorites: Chronology of core formation and mantle differentiation, Geochim. Cosmochim. Acta, 68, 2935, 10.1016/j.gca.2004.01.009 Kortenkamp, 2013, Trapping and dynamical evolution of interplanetary dust particles in Earth's quasi-satellite resonance, Icarus, 226, 1550, 10.1016/j.icarus.2013.08.020 Kortenkamp, 2011, Transformation of Trojans into quasi-satellites during planetary migration and their subsequent close-encounters with the host planet, Icarus, 215, 669, 10.1016/j.icarus.2011.07.019 Kortenkamp, 2004, Survival of Trojan-type companions of Neptune during primordial planet migration, Icarus, 167, 347, 10.1016/j.icarus.2003.09.021 Levison, 1994, The long-term dynamical behavior of short-period comets, Icarus, 108, 18, 10.1006/icar.1994.1039 Levison, 1997, Dynamical evolution of Jupiter's Trojan asteroids, Nature, 385, 42, 10.1038/385042a0 Levison, 2008, Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune, Icarus, 196, 258, 10.1016/j.icarus.2007.11.035 Lugmair, 1998, Early solar system timescales according to 53Mn-53Cr systematics, Geochim. Cosmochim. Acta, 62, 2863, 10.1016/S0016-7037(98)00189-6 Lykawka, 2011, Origin and dynamical evolution of Neptune Trojans II: Long-term evolution, MNRAS, 412, 537, 10.1111/j.1365-2966.2010.17936.x Mastrobuono-Battisti, 2015, A primordial origin for the compositional similarity between the Earth and the Moon, Nature, 520, 212, 10.1038/nature14333 Melosh, 2009, An isotopic crisis for the giant impact origin of the Moon Melosh, 2014, New approaches to the Moon's isotopic crisis, Philos. Trans. R. Soc. A, 372, 10.1098/rsta.2013.0168 Mikkola, 2004, Asteroid 2002 VE68, a quasi-satellite of Venus, Mon. Not. R. Astron. Soc., 351, L63, 10.1111/j.1365-2966.2004.07994.x Morbidelli, 2012, Building terrestrial planets, Annu. Rev. Earth Planet. Sci., 40, 251, 10.1146/annurev-earth-042711-105319 Mullally, 2015, Planetary candidates observed by Kepler VI: Planet sample from Q1-Q16 (47 months), Astrophys. J. Suppl., 217, 10.1088/0067-0049/217/2/31 Nakajima, 2015, Melting and mixing states of the Earth's mantle after the Moon-forming impact, Earth Planet. Sci. Lett., 427, 286, 10.1016/j.epsl.2015.06.023 Quarles, 2015, Dynamical evolution of the Earth-Moon progenitors – Whence Theia?, Icarus, 248, 318, 10.1016/j.icarus.2014.10.044 Rowe, 2015, Planetary candidates observed by Kepler V: Planet sample from Q1-Q12 (36 months), Astrophys. J. Suppl., 217, 10.1088/0067-0049/217/1/16 Safronov, 1972, Evolution of the Protoplanetary cloud and formation of the Earth and the planets, 677 2014, Philos. Trans. R. Soc. A, 372 Stewart, 2013, Giant impacts, volatile loss, and the K/Th ratios on the Moon, Earth, and Mercury Stoer, 1980 Thompson, 1983, Two-phase gravitational instabilities in thin disks with application to the origin of the Moon, 14, 787 Touboul, 2015, Tungsten isotopic evidence for disproportional late accretion to the Earth and Moon, Nature, 520, 530, 10.1038/nature14355 Tsiganis, 2005, Origin of the orbital architecture of the giant planets of the Solar System, Nature, 435, 459, 10.1038/nature03539 Walsh, 2011, Sculpting of the inner solar system by gas-driven orbital migration of Jupiter, Nature, 475, 206, 10.1038/nature10201 Wajer, 2010, Dynamical evolution of Earth's quasi-satellites: 2004 GU9 and 2006 FV35, Icarus, 209, 488, 10.1016/j.icarus.2010.05.012 Warren, 2011, Stable isotopes and the noncarbonaceous derivation of ureilites, in common with nearly all differentiated planetary materials, Geochim. Cosmochim. Acta, 75, 6912, 10.1016/j.gca.2011.09.011 Wetherill, 1977, Evolution of the Earth's planetesimal swarm subsequent to the formation of the Earth and Moon, 1 Wetherill, 1979, Steady state populations of Apollo-Amor objects, Icarus, 37, 96, 10.1016/0019-1035(79)90118-0 Wetherill, 1989, Accumulation of a swarm of small planetesimals, Icarus, 77, 330, 10.1016/0019-1035(89)90093-6 Wetherill, 1993, Formation of planetary embryos: Effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination, Icarus, 106, 190, 10.1006/icar.1993.1166 Wiegert, 2005, Sleeping with an elephant: Asteroids that share a planet's orbit, J. R. Astron. Soc. Canada, 99, 145 Wisdom, 1991, Symplectic maps for the N-body problem, Astron. J., 102, 1528, 10.1086/115978 Young, 2016, Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact, Science, 351, 493, 10.1126/science.aad0525 Zhang, 2012, The proto-Earth as a significant source of lunar material, Nat. Geosci., 5, 251, 10.1038/ngeo1429