Dynamical behaviors of fractional-order Lotka–Volterra predator–prey model and its discretization

A. A. Elsadany1, A.E. Matouk2
1Department of Basic Science, Faculty of Computers and Informatics, Suez Canal University, Ismailia 41522, Egypt
2Mathematics Department, Faculty of Science, Hail University, Hail, Saudi Arabia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Berryman, A.A.: The origins and evolution of predator–prey theory. Ecology 73, 1530–1535 (1992)

Bagley, R.L., Calico, R.A.: Fractional order state equations for the control of viscoelastically damped structures. J. Guid. Control Dyn. 14, 304–311 (1991)

Sun, H.H., Abdelwahab, A.A., Onaral, B.: Linear approximation of transfer function with a pole of fractional order. IEEE Trans. Autom. Control 29, 441–444 (1984)

Ichise, M., Nagayanagi, Y., Kojima, T.: An analog simulation of noninteger order transfer functions for analysis of electrode process. J. Electroanal. Chem. 33, 253–265 (1971)

Ahmed, E., Elgazzar, A.S.: On fractional order differential equations model for nonlocal epidemics. Phys. A 379, 607–614 (2007)

El-Sayed, A.M.A., El-Mesiry, A.E.M., El-Saka, H.A.A.: On the fractional-order logistic equation. Appl. Math. Lett. 20, 817–823 (2007)

Ahmed, E., El-Sayed, A.M.A., El-Saka, H.A.A.: Equilibrium points, stability and numerical solutions of fractional-order predator–prey and rabies models. J. Math. Anal. Appl. 325, 542–553 (2007)

Heaviside, O.: Electromagnetic Theory. Chelsea, New York (1971)

Kusnezov, D., Bulgac, A., Dang, G.D.: Quantum levy processes and fractional kinetics. Phys. Rev. Lett. 82, 1136–1139 (1999)

El-Sayed, A.M.A.: Fractional-order diffusion-wave equation. Int. J. Theor. Phys. 35, 311–322 (1996)

El-Mesiry, A.E.M., Ahmed, E.: On a fractional model for earthquakes. Appl. Math. Comput. 178, 207–211 (2006)

Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astron. Soc. 13, 529–539 (1967)

Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

Lorenz, E.N.: Deterministic non-periodic flows. J. Atmos. Sci. 20, 130–141 (1963)

Jana, D.: Chaotic dynamics of a discrete predator–prey system with prey refuge. Appl. Math. Comput. 224, 848–865 (2013)

Agiza, H.N., Matouk, A.E.: Adaptive synchronization of Chua’s circuits with fully unknown parameters. Chaos Soliton Fractals 28, 219–227 (2006)

Matouk, A.E.: Dynamical analysis, feedback control and synchronization of Liu dynamical system. Nonlinear Anal. Theory Methods Appl. 69, 3213–3224 (2008)

Matouk, A.E., Agiza, H.N.: Bifurcations, chaos and synchronization in ADVP circuit with parallel resistor. J. Math. Anal. Appl. 341, 259–269 (2008)

Agiza, H.N., Elabbasy, E.M., EL-Metwally, H., Elasdany, A.A.: Chaotic dynamics of a discrete prey-predator model with Holling type II. Nonlinear Anal. Real World Appl. 10, 116–119 (2009)

Elabbasy, E.M., Agiza, H.N., El-Metwally, H.A., Elsadany, A.A.: Bifurcation analysis, chaos and control in the Burgers mapping. Int. J. Nonlinear Sci. 4, 171–185 (2007)

Elsadany, A.A., El-Metwally, H.A., Elabbasy, E.M., Agzia, H.N.: Chaos and bifurcation of a nonlinear discrete prey–predator system. Comput. Ecol. Softw. 2, 169–180 (2012)

Elsadany, A.A.: Competition analysis of a triopoly game with bounded rationality. Chaos Solitons Fractals 45, 1343–1348 (2012)

Hegazi, A.S., Matouk, A.E.: Chaos synchronization of the modified autonomous Van der Pol–Duffing circuits via active control. Applications of Chaos and Nonlinear Dynamics in Science and Engineering, vol. 3, pp. 185–202. Springer, Berlin (2013)

Elabbasy, E.M., Elsadany, A.A., Zhang, Yue: Bifurcation analysis and chaos in a discrete reduced Lorenz system. Appl. Math. Comput. 228, 184–194 (2014)

Matouk, A.E.: Stability conditions, hyperchaos and control in a novel fractional order hyperchaotic system. Phys. Lett. A 373, 2166–2173 (2009)

Matouk, A.E.: Dynamical behaviors, linear feedback control and synchronization of the fractional order Liu system. J. Nonlinear Sys. Appl. 1, 135–140 (2010)

Matouk, A.E.: Chaos, feedback control and synchronization of a fractional-order modified autonomous Van der Pol–Duffing circuit. Commun. Nonlinear Sci. Numer. Simul. 16, 975–986 (2011)

Hegazi, A.S., Matouk, A.E.: Dynamical behaviors and synchronization in the fractional order hyperchaotic Chen system. Appl. Math. Lett. 24, 1938–1944 (2011)

Hegazi, A.S., Ahmed, E., Matouk, A.E.: On chaos control and synchronization of the commensurate fractional order Liu system. Commun. Nonlinear Sci. Numer. Simul. 18, 1193–1202 (2013)

Matouk, A.E., Elsadany, A.A.: Achieving synchronization between the fractional-order hyperchaotic Novel and Chen systems via a new nonlinear control technique. Appl. Math. Lett. 29, 30–35 (2014)

Lotka, A.J.: Elements of Physical Biology. Williams and Wilkins, Baltimore (1925)

Volterra, V.: Variazioni e fluttuazioni del numero di individui in specie animali conviventi. Mem. Acad. Lincei. 2, 31–113 (1926)

Matignon, D.: Stability results for fractional differential equations with applications to control processing. Computational Engineering in System Application, vol. 2, p. 963. France, Lille (1996)

Elaydi, S.: Discrete Chaos: With Applications in Science and Engineering, 2nd edn. Chapman and Hall/CRC, Boca Raton (2008)

Kot, M.: Elements of Mathematical Ecology. Cambridge University Press, Cambridge (2001)