Dynamical analysis of a novel single Opamp-based autonomous LC oscillator: antimonotonicity, chaos, and multiple attractors

International Journal of Dynamics and Control - Tập 6 Số 4 - Trang 1543-1557 - 2018
Jacques Kengne1, Nestor Tsafack1, Léandre Kamdjeu Kengne1
1Laboratoire d’Automatique et Informatique Appliquée (LAIA), Department of Electrical Engineering IUT-FV Bandjoun, University of Dschang, Dschang, Cameroon

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chua Leon O, Wu CW, Hunang A, Zhong GQ (1993) A universal circuit for studying and generating chaos—part I: routes to chaos. IEEE Trans Circuits Syst I 10:732–744

Freire E, Franquelo LG, Aracil J (1984) Periodicity and chaos in an autonomous electrical system. IEEE Trans Circuits Syst 31(3):237–247

Maggio GM, De Feo O, Kennedy MP (1999) Nonlinear analysis of the Colpitts oscillator and application to design. IEEE Trans Circuits Syst I Fundam Theory Appl 46:1118–1130

Tchitnga R, Fotsin HB, Nana B, Louodop P, Woafo P (2012) Hartley’s oscillator: the simplest chaotic two-component circuit. Chaos Solitons Fractals 45:306–313

Dawson SP, Grebogi C, Yorke JA, Kan I, Koçak H (1992) Antimonotonicity: inevitable reversals of period-doubling cascades. Phys Lett A 162:249–254

Tchitnga R, Tekou N, Louodop P, Gallas J (2016) Chaos in a single op-amp based jerk circuit: experiments and simulations. IEEE Trans Circuits Syst II Express Briefs 63(3):239–243

Sprott JC (2010) Elegant chaos: algebraically simple flow. World Scientific Publishing, Singapore

Matsumoto Chua L, Tanaka S (1984) Simplest chaotic nonautonomous circuit. Phys Rev A 30:1155–1162

Murali K, Chua L (1994) The simplest dissipative nonautonomous chaotic circuit. IEEE Trans Circuits Syst I(41):462–463

Munmuangsaen B, Banlue Srisuchinwong B, Sprott JC (2011) Generalization of the simplest autonomous chaotic system. Phys Lett A 375:1445–1450

Gottlieb H (1996) Question #38. What is the simplest jerk function that gives chaos? Am J Phys 64:525

Sprott J (2000) Simple chaotic systems and circuits. Am J Phys 68:758–763

Sprott JC (2011) A new chaotic jerk circuit. IEEE Trans Circuits Syst II Express Briefs 58:240–243

Wang Z, Akgul A, Pham VT, Jafari S (2017) Chaos-based application of a novel no-equilibrium chaotic system with coexisting attractors. Nonlinear Dyn 89(3):1877–1887

Kengne J, Folifack V, Chedjou J, Leutcho G (2017) Nonlinear behavior of a novel chaotic jerk system: antimonotonicity, crises, and multiple coexisting attractors. Int J Dyn Control. https://doi.org/10.1007/s40435-017-0318-6

Kengne J, Njitacke ZT, Fotsin HB (2016) Dynamical analysis of a simple autonomous jerk system with multiple attractors. Nonlinear Dyn 83(1):751–765

Kengne J, Njitacke ZT, Fotsin HB (2016) Coexistence of multiple attractors and crisis route to chaos in autonomous third order Duffing–Holmes type chaotic oscillators. Commun Nonlinear Sci Numer Simul 36:29–44

Kiers K, Schmidt D (2004) Precision measurement of a simple chaotic circuit. Am J Phys 76(4):503–509

San-Um W, Suksiri B, Ketthong P (2014) A simple RLCC-diode-opamp chaotic oscillator. IJBC 24:1450155

Muthuswamy B, Chua LO (2010) Simplest chaotic circuit. Int J Bifurc Chaos 20:1567–1580

Piper J, Sprott JC (2010) Simple autonomous chaotic circuits. IEEE Trans Circuits Syst II Express Briefs 57:730–734

Elwakil A, Kennedy M (1999) A family of Colpitts-like chaotic oscillators. J Frankl Inst 336:687–700

Tchitnga R, Zebaze Nanfa’a R, Pelap F, Louodop P, Woafo P (2015) A novel high-frequency interpretation of a general purpose Op-Amp-based negative resistance for chaotic vibrations in a simple a priori non chaotic circuit. J Vib Control 23(5):744–751

Elwakil AS, Kennedy MP (2000) Chaotic oscillator configuration using a frequency dependent negative resistor. Int J Circuit Theor Appl 28:69–76

Banerjee T, Karmakar B, Sarkar BC (2010) Single amplifier biquad based autonomous electronic oscillators for chaos generation. Nonlinear Dyn 62:859–866

Banerjee T, Karmakar B, Sarkar BC (2012) Chaotic electronic oscillator from single amplifier biquad. AEU Int J Electron Commun 66(7):593–597

Buscarino A, Fortuna L, Frasca M, Gambuzza LV (2012) A chaotic circuit based on Hewlett-Packard memristor. Chaos 22:023136

Kengne J, Nguomkam Negou A, Njitacke ZT (2017) Antimonotonicity, chaos and multiple attractors in a novel autonomous jerk circuit. Int J Bifurc Chaos 27:1750100

Hanias MP, Giannaris G, Spyridakis AR (2006) Time series analysis in chaotic diode resonator circuit. Chaos Solitons Fractals 27:569

Sukov DW, Bleich ME, Gauthier J, Socolar JES (1997) Controlling chaos in a fast diode resonator using extended time-delay auto-synchronization: experimental observations and theoretical analysis. Chaos 7(4):560–576

Eichhorn R, Linz SJ, Hanggi P (1998) Transformation of nonlinear dynamical systems to jerky motion and its application to minimal chaotic flows. Phys Rev E 58:7151–7164

Nayfeh AH, Balachandran B (1995) Applied nonlinear dynamics: analytical, computational and experimental methods. Wiley, New York

Strogatz SH (1995) Nonlinear dynamics and chaos. Addison-Wesley, Reading

Wiggins S (1983) Introduction to applied nonlinear dynamics. Springer, New York

Leonov GA, Kuznetsov NV (2013) Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int J Bifurc Chaos 23(1):1330002

Leonov GA, Kuznetsov NV, Mokaev TN (2015) Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion. Eur Phys J Spec Top 224:1421–1458

Wolf A, Swift JB, Swinney HL, Wastano JA (1985) Determining Lyapunov exponents from time series. Physica D 16:285–317

Parlitz U, Lauterborn W (1985) Superstructure in the bifurcation set of the Duffing equation $$\ddot{\text{ x }} + \text{ d }{\dot{\text{ x }}} + \text{ x }+ \text{ x }3 = \text{ f } \, \text{ cos }$$ x ¨ + d x ˙ + x + x 3 = f cos ( $$\omega $$ ω t). Phys Lett A 107:351–355

Parlitz U, Lauterborn W (1987) Period-doubling cascades and devil’s staircases of the driven van der Pol oscillator. Phys Rev A 36:1428

Kocarev L, Halle K, Eckert K, Chua L (1993) Experimental observation of antimonotonicity in Chua’s circuit. Int J Bifurc Chaos 3:1051–1055

Kyprianidis I, Stouboulos I, Haralabidis P, Bountis T (2000) Antimonotonicity and chaotic dynamics in a fourth-order autonomous nonlinear electric circuit. Int J Bifurc Chaos 10:1903–1915

Manimehan I, Philominathan P (2012) Composite dynamical behaviors in a simple series-parallel LC circuit. Chaos Solitons Fractals 45:1501–1509

Bier M, Bountis TC (1984) Remerging Feigenbaum trees in dynamical systems. Phys Lett A 104:239–244

Ogawa T (1988) Quasiperiodic instability and chaos in the bad-cavity laser with modulated inversion: numerical analysis of a Toda oscillator system. Phys Rev A 37:4286

Sprott JC (2011) A proposed standard for the publication of new chaotic systems. Int J Bifurc Chaos 21(9):2391–2394

Masoller C (1994) Coexistence of attractors in a laser diode with optical feedback from a large external cavity. Phys Rev A 50:2569–2578

Massoudi A, Mahjani MG, Jafarian M (2010) Multiple attractors in Koper–Gaspard model of electrochemical. J Electroanal Chem 647:74–86

Li C, Sprott JC (2014) Coexisting hidden attractors in a 4-D simplified Lorenz system. Int J Bifurc Chaos 24:1450034

Kuznetsov AP, Kuznetsov SP, Mosekilde E, Stankevich NV (2015) Co-existing hidden attractors in a radio-physical oscillator. J Phys A Math Theor 48:125101

Hens C, Dana SK, Feudel U (2015) Extreme multistability: attractors manipulation and robustness. Chaos 25:053112

Luo X, Small M (2007) On a dynamical system with multiple chaotic attractors. Int J Bifurc Chaos 17(9):3235–3251

Pisarchik AN, Feudel U (2014) Control of multistability. Phys Rep 540(4):167–218

Itoh M (2001) Synthesis of electronic circuits for simulating nonlinear dynamics. Int J Bifurc Chaos 11(3):605–653

Gilmore R, Letellier C (2007) The symmetry of chaos. Oxford University Press, New York

Sprott JC (2014) Simplest chaotic flows with involutional symmetry. Int J Bifurc Chaos 24(1):1450009