Dynamical Organization of Compositionally Distinct Inner and Outer Membrane Lipids of Mycobacteria

Biophysical Journal - Tập 118 - Trang 1279-1291 - 2020
Pranav Adhyapak1, Aswin T. Srivatsav1, Manjari Mishra1, Abhishek Singh1, Rishikesh Narayan2, Shobhna Kapoor1,3
1Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
2School of Chemical and Biological Sciences, Indian Institute of Technology Goa, Goa, India
3Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Mumbai, India

Tài liệu tham khảo

Pai, 2016, Tuberculosis, Nat. Rev. Dis. Primers, 2, 16076, 10.1038/nrdp.2016.76 Jackson, 2014, The mycobacterial cell envelope-lipids, Cold Spring Harb. Perspect. Med, 4, a021105, 10.1101/cshperspect.a021105 Gago, 2018, Lipid metabolism and its implication in mycobacteria-host interaction, Curr. Opin. Microbiol, 41, 36, 10.1016/j.mib.2017.11.020 Siegrist, 2014, Mycobacterial lipid logic, Cell Host Microbe, 15, 1, 10.1016/j.chom.2013.12.005 Bansal-Mutalik, 2014, Mycobacterial outer membrane is a lipid bilayer and the inner membrane is unusually rich in diacyl phosphatidylinositol dimannosides, Proc. Natl. Acad. Sci. USA, 111, 4958, 10.1073/pnas.1403078111 Jankute, 2015, Assembly of the mycobacterial cell wall, Annu. Rev. Microbiol, 69, 405, 10.1146/annurev-micro-091014-104121 Brennan, 1995, The envelope of mycobacteria, Annu. Rev. Biochem, 64, 29, 10.1146/annurev.bi.64.070195.000333 Chiaradia, 2017, Dissecting the mycobacterial cell envelope and defining the composition of the native mycomembrane, Sci. Rep., 7, 12807, 10.1038/s41598-017-12718-4 Sartain, 2011, Lipidomic analyses of Mycobacterium tuberculosis based on accurate mass measurements and the novel “Mtb LipidDB”, J. Lipid Res, 52, 861, 10.1194/jlr.M010363 Layre, 2011, A comparative lipidomics platform for chemotaxonomic analysis of Mycobacterium tuberculosis, Chem. Biol, 18, 1537, 10.1016/j.chembiol.2011.10.013 Hoffmann, 2008, Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure, Proc. Natl. Acad. Sci. USA, 105, 3963, 10.1073/pnas.0709530105 Sezgin, 2017, The mystery of membrane organization: composition, regulation and roles of lipid rafts, Nat. Rev. Mol. Cell Biol, 18, 361, 10.1038/nrm.2017.16 Varshney, 2016, Lipid rafts in immune signalling: current progress and future perspective, Immunology, 149, 13, 10.1111/imm.12617 Christensen, 1999, Lipid domains of mycobacteria studied with fluorescent molecular probes, Mol. Microbiol, 31, 1561, 10.1046/j.1365-2958.1999.01304.x Lopez, 2017, Exploring functional membrane microdomains in bacteria: an overview, Curr. Opin. Microbiol, 36, 76, 10.1016/j.mib.2017.02.001 Rodriguez-Rivera, 2017, Visualization of mycobacterial membrane dynamics in live cells, J. Am. Chem. Soc, 139, 3488, 10.1021/jacs.6b12541 Pal, 2017, Comparative lipidomics of drug sensitive and resistant Mycobacterium tuberculosis reveals altered lipid imprints, 3 Biotech, 7, 325, 10.1007/s13205-017-0972-6 Lahiri, 2016, Rifampin resistance mutations are associated with broad chemical remodeling of Mycobacterium tuberculosis, J. Biol. Chem, 291, 14248, 10.1074/jbc.M116.716704 Ortalo-Magné, 1996, Identification of the surface-exposed lipids on the cell envelopes of Mycobacterium tuberculosis and other mycobacterial species, J. Bacteriol, 178, 456, 10.1128/JB.178.2.456-461.1996 Olubummo, 2014, Phase changes in mixed lipid/polymer membranes by multivalent nanoparticle recognition, Langmuir, 30, 259, 10.1021/la403763v Dadhich, 2019, Biophysical characterization of mycobacterial model membranes and their interaction with rifabutin: towards lipid-guided drug screening in tuberculosis, Biochim Biophys Acta Biomembr, 1861, 1213, 10.1016/j.bbamem.2019.04.004 Sanchez, 2012, Laurdan generalized polarization fluctuations measures membrane packing micro-heterogeneity in vivo, Proc. Natl. Acad. Sci. USA, 109, 7314, 10.1073/pnas.1118288109 Villeneuve, 2005, Temperature dependence of the Langmuir monolayer packing of mycolic acids from Mycobacterium tuberculosis, Biochim. Biophys. Acta, 1715, 71, 10.1016/j.bbamem.2005.07.005 Goldberg, 1994, Effects of diacylglycerols and Ca2+ on structure of phosphatidylcholine/phosphatidylserine bilayers, Biophys. J, 66, 382, 10.1016/S0006-3495(94)80788-X Villeneuve, 2007, Conformational behavior of oxygenated mycobacterial mycolic acids from Mycobacterium bovis BCG, Biochim. Biophys. Acta, 1768, 1717, 10.1016/j.bbamem.2007.04.003 Liu, 1996, Mycolic acid structure determines the fluidity of the mycobacterial cell wall, J. Biol. Chem, 271, 29545, 10.1074/jbc.271.47.29545 Kapoor, 2011, Temperature-pressure phase diagram of a heterogeneous anionic model biomembrane system: results from a combined calorimetry, spectroscopy and microscopy study, Biochim. Biophys. Acta, 1808, 1187, 10.1016/j.bbamem.2011.01.011 Huarte, 2016, Functional organization of the HIV lipid envelope, Sci. Rep, 6, 34190, 10.1038/srep34190 García-Sáez, 2007, Effect of line tension on the lateral organization of lipid membranes, J. Biol. Chem, 282, 33537, 10.1074/jbc.M706162200 Kuzmin, 2005, Line tension and interaction energies of membrane rafts calculated from lipid splay and tilt, Biophys. J, 88, 1120, 10.1529/biophysj.104.048223 Attwood, 2013, Preparation of DOPC and DPPC supported planar lipid bilayers for atomic force microscopy and atomic force spectroscopy, Int. J. Mol. Sci, 14, 3514, 10.3390/ijms14023514 Garcia-Manyes, 2005, Effect of temperature on the nanomechanics of lipid bilayers studied by force spectroscopy, Biophys. J, 89, 4261, 10.1529/biophysj.105.065581 Murthy, 2016, The temperature-dependent physical state of polar lipids and their miscibility impact the topography and mechanical properties of bilayer models of the milk fat globule membrane, Biochim. Biophys. Acta, 1858, 2181, 10.1016/j.bbamem.2016.06.020 Veatch, 2003, Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol, Biophys. J, 85, 3074, 10.1016/S0006-3495(03)74726-2 Korlach, 1999, Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy, Proc. Natl. Acad. Sci. USA, 96, 8461, 10.1073/pnas.96.15.8461