Dynamical Organization of Compositionally Distinct Inner and Outer Membrane Lipids of Mycobacteria
Tài liệu tham khảo
Pai, 2016, Tuberculosis, Nat. Rev. Dis. Primers, 2, 16076, 10.1038/nrdp.2016.76
Jackson, 2014, The mycobacterial cell envelope-lipids, Cold Spring Harb. Perspect. Med, 4, a021105, 10.1101/cshperspect.a021105
Gago, 2018, Lipid metabolism and its implication in mycobacteria-host interaction, Curr. Opin. Microbiol, 41, 36, 10.1016/j.mib.2017.11.020
Siegrist, 2014, Mycobacterial lipid logic, Cell Host Microbe, 15, 1, 10.1016/j.chom.2013.12.005
Bansal-Mutalik, 2014, Mycobacterial outer membrane is a lipid bilayer and the inner membrane is unusually rich in diacyl phosphatidylinositol dimannosides, Proc. Natl. Acad. Sci. USA, 111, 4958, 10.1073/pnas.1403078111
Jankute, 2015, Assembly of the mycobacterial cell wall, Annu. Rev. Microbiol, 69, 405, 10.1146/annurev-micro-091014-104121
Brennan, 1995, The envelope of mycobacteria, Annu. Rev. Biochem, 64, 29, 10.1146/annurev.bi.64.070195.000333
Chiaradia, 2017, Dissecting the mycobacterial cell envelope and defining the composition of the native mycomembrane, Sci. Rep., 7, 12807, 10.1038/s41598-017-12718-4
Sartain, 2011, Lipidomic analyses of Mycobacterium tuberculosis based on accurate mass measurements and the novel “Mtb LipidDB”, J. Lipid Res, 52, 861, 10.1194/jlr.M010363
Layre, 2011, A comparative lipidomics platform for chemotaxonomic analysis of Mycobacterium tuberculosis, Chem. Biol, 18, 1537, 10.1016/j.chembiol.2011.10.013
Hoffmann, 2008, Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure, Proc. Natl. Acad. Sci. USA, 105, 3963, 10.1073/pnas.0709530105
Sezgin, 2017, The mystery of membrane organization: composition, regulation and roles of lipid rafts, Nat. Rev. Mol. Cell Biol, 18, 361, 10.1038/nrm.2017.16
Varshney, 2016, Lipid rafts in immune signalling: current progress and future perspective, Immunology, 149, 13, 10.1111/imm.12617
Christensen, 1999, Lipid domains of mycobacteria studied with fluorescent molecular probes, Mol. Microbiol, 31, 1561, 10.1046/j.1365-2958.1999.01304.x
Lopez, 2017, Exploring functional membrane microdomains in bacteria: an overview, Curr. Opin. Microbiol, 36, 76, 10.1016/j.mib.2017.02.001
Rodriguez-Rivera, 2017, Visualization of mycobacterial membrane dynamics in live cells, J. Am. Chem. Soc, 139, 3488, 10.1021/jacs.6b12541
Pal, 2017, Comparative lipidomics of drug sensitive and resistant Mycobacterium tuberculosis reveals altered lipid imprints, 3 Biotech, 7, 325, 10.1007/s13205-017-0972-6
Lahiri, 2016, Rifampin resistance mutations are associated with broad chemical remodeling of Mycobacterium tuberculosis, J. Biol. Chem, 291, 14248, 10.1074/jbc.M116.716704
Ortalo-Magné, 1996, Identification of the surface-exposed lipids on the cell envelopes of Mycobacterium tuberculosis and other mycobacterial species, J. Bacteriol, 178, 456, 10.1128/JB.178.2.456-461.1996
Olubummo, 2014, Phase changes in mixed lipid/polymer membranes by multivalent nanoparticle recognition, Langmuir, 30, 259, 10.1021/la403763v
Dadhich, 2019, Biophysical characterization of mycobacterial model membranes and their interaction with rifabutin: towards lipid-guided drug screening in tuberculosis, Biochim Biophys Acta Biomembr, 1861, 1213, 10.1016/j.bbamem.2019.04.004
Sanchez, 2012, Laurdan generalized polarization fluctuations measures membrane packing micro-heterogeneity in vivo, Proc. Natl. Acad. Sci. USA, 109, 7314, 10.1073/pnas.1118288109
Villeneuve, 2005, Temperature dependence of the Langmuir monolayer packing of mycolic acids from Mycobacterium tuberculosis, Biochim. Biophys. Acta, 1715, 71, 10.1016/j.bbamem.2005.07.005
Goldberg, 1994, Effects of diacylglycerols and Ca2+ on structure of phosphatidylcholine/phosphatidylserine bilayers, Biophys. J, 66, 382, 10.1016/S0006-3495(94)80788-X
Villeneuve, 2007, Conformational behavior of oxygenated mycobacterial mycolic acids from Mycobacterium bovis BCG, Biochim. Biophys. Acta, 1768, 1717, 10.1016/j.bbamem.2007.04.003
Liu, 1996, Mycolic acid structure determines the fluidity of the mycobacterial cell wall, J. Biol. Chem, 271, 29545, 10.1074/jbc.271.47.29545
Kapoor, 2011, Temperature-pressure phase diagram of a heterogeneous anionic model biomembrane system: results from a combined calorimetry, spectroscopy and microscopy study, Biochim. Biophys. Acta, 1808, 1187, 10.1016/j.bbamem.2011.01.011
Huarte, 2016, Functional organization of the HIV lipid envelope, Sci. Rep, 6, 34190, 10.1038/srep34190
García-Sáez, 2007, Effect of line tension on the lateral organization of lipid membranes, J. Biol. Chem, 282, 33537, 10.1074/jbc.M706162200
Kuzmin, 2005, Line tension and interaction energies of membrane rafts calculated from lipid splay and tilt, Biophys. J, 88, 1120, 10.1529/biophysj.104.048223
Attwood, 2013, Preparation of DOPC and DPPC supported planar lipid bilayers for atomic force microscopy and atomic force spectroscopy, Int. J. Mol. Sci, 14, 3514, 10.3390/ijms14023514
Garcia-Manyes, 2005, Effect of temperature on the nanomechanics of lipid bilayers studied by force spectroscopy, Biophys. J, 89, 4261, 10.1529/biophysj.105.065581
Murthy, 2016, The temperature-dependent physical state of polar lipids and their miscibility impact the topography and mechanical properties of bilayer models of the milk fat globule membrane, Biochim. Biophys. Acta, 1858, 2181, 10.1016/j.bbamem.2016.06.020
Veatch, 2003, Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol, Biophys. J, 85, 3074, 10.1016/S0006-3495(03)74726-2
Korlach, 1999, Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy, Proc. Natl. Acad. Sci. USA, 96, 8461, 10.1073/pnas.96.15.8461