Mô Hình Động Lực Học của Tổ Chức Nhiệm Vụ trong Các Tập Hợp Côn Trùng Xã Hội

Springer Science and Business Media LLC - Tập 78 - Trang 879-915 - 2016
Yun Kang1, Guy Theraulaz2,3
1Sciences and Mathematics Faculty, College of Letters and Sciences, Arizona State University, Mesa, USA
2Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse Cedex 9, France
3CNRS, Centre de Recherches sur la Cognition Animale, Toulouse, France

Tóm tắt

Cấu trúc tổ chức của các xã hội côn trùng, chẳng hạn như phân chia công việc, phân bổ nhiệm vụ, điều tiết tập thể, và phản ứng hành động tập thể, được coi là những lý do chính cho sự thành công về sinh thái. Trong bài báo này, chúng tôi đề xuất và nghiên cứu một khung mô hình tổng quát bao gồm ba đặc điểm sau: (a) ngưỡng phản ứng nội bộ trung bình cho mỗi nhiệm vụ (yếu tố nội tại); (b) giao tiếp mạng xã hội có thể dẫn đến việc chuyển đổi nhiệm vụ (yếu tố môi trường); và (c) sự thay đổi động lực của các yêu cầu nhiệm vụ (yếu tố bên ngoài). Do các công nhân trong nhiều loài côn trùng xã hội thể hiện tính đa kiểu theo độ tuổi, chúng tôi cũng mở rộng mô hình của mình để tích hợp tính đa kiểu theo tuổi tác, trong đó sở thích công việc của công nhân thay đổi theo lứa tuổi. Chúng tôi áp dụng khung mô hình tổng quát của mình cho hai nhóm nhiệm vụ: nhiệm vụ bên trong thuộc về thuộc địa so với nhiệm vụ bên ngoài thuộc về thuộc địa. Nghiên cứu phân tích của chúng tôi về các mô hình cung cấp những hiểu biết và dự đoán quan trọng về ảnh hưởng của kích thước thuộc địa, giao tiếp xã hội, và sở thích nhiệm vụ liên quan đến tuổi tác lên việc phân bổ nhiệm vụ và phân chia công việc trong môi trường động lực học thích ứng. Nghiên cứu của chúng tôi cho thấy rằng thuộc địa có kích thước nhỏ hơn đầu tư nguồn lực cho sự phát triển của thuộc địa và phân bổ nhiều công nhân hơn vào các nhiệm vụ có rủi ro như tìm kiếm thức ăn, trong khi đó thuộc địa lớn hơn chuyển nhiều công nhân sang thực hiện các nhiệm vụ an toàn hơn bên trong thuộc địa. Các tương tác xã hội giữa các nhóm nhiệm vụ khác nhau đóng vai trò quan trọng trong việc định hình phân bổ nhiệm vụ tùy thuộc vào chi phí và yêu cầu tương đối của các nhiệm vụ.

Từ khóa

#côn trùng xã hội #mô hình động lực học #phân chia công việc #phân bổ nhiệm vụ #giao tiếp xã hội

Tài liệu tham khảo

Abril S, Gmez C (2014) Strength in numbers: large and permanent colonies have higher queen oviposition rates in the invasive Argentine ant (Linepithema humile, Mayr). J Insect Physiol 62:21–25 Anderson C, Ratnieks FLW (1999) Task partitioning in foraging: effect of colony size on queueing times and information reliability. In: Detrain C, Deneubourg JL, Pasteels JM (eds) Information processing in social insects. Birkhauser, Basel, pp 31–50 Beekman M, Sumpter DJT, Ratnieks FLW (2001) Phase transition between disordered and ordered foraging in Pharaoh’s ants. Proc Natl Acad Sci 98(17):9703–9706 Beshers SN, Fewell JH (2001) Models of division of labor in social insects. Annu Rev Entomol 46:413–440 Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press Bonabeau E, Theraulaz G, Deneubourg J-L (1996) Quantitative study of the fixed threshold model for the regulation of division of labour in insect societies. Proc R Soc Lond Series B: Biol Sci 263(1376):1565–1569 Bonabeau E, Sobkowski A, Theraulaz G, Deneubourg J-L (1997) Adaptive task allocation inspired by a model of division of labor in social insects. Proc Biocomput Emerg Comput 97:36–45 Bonabeau E, Theraulaz G, Deneubourg J-L (1998a) Group and mass recruitment in ant colonies: the influence of contact rates. J Theor Biol 195:157–166 Bonabeau E, Theraulaz G, Deneubourg J-L (1998b) Fixed response thresholds and the regulation of division of labor in insect societies. Bull Math Biol 60(4):753–807 Bouwma AM, Nordheim EV, Jeanne RL (2006) Per-capita productivity in a social wasp: no evidence for a negative effect of colony size. Insect Soc 53(4):412–419 Burd M, Howard JJ (2008) Optimality in a partitioned task performed by social insects. Biol Lett 4:627–629 Calabi P, Traniello JFA (1989) Behavioral flexibility in age castes of the ant Pheidole dentata. J Insect Behav 2:663–677 Camazine S (1991) Self-organizing pattern formation on the combs of honey bee colonies. Behav Ecol Sociobiol 28:61–76 Camazine S, Visscher PK, Finley J, Vetter RS (1999) House-hunting by honey bee swarms: collective decisions and individual behaviors. Insectes Sociaux 46:348–360 Camazine S, Deneubourg J-L, Franks N, Sneyd J, Theraulaz G, Bonabeau E (2001) Self-organization in biological systems. Princeton University Press, Princeton Charbonneau D, Blonder B, Dornhaus A (2013) Social insects: a model system for network dynamics. In: Holme P, Jari S (eds) Temporal Networks. Springer Books Charbonneau D, Dornhaus A (2015) Workers specialized on inactivity: behavioral consistency of inactive workers and their role in task allocation. Behav Ecol Sociobiol 69(9):1459–1472 Chittka L, Muller H (2009) Learning, specialization, efficiency and task allocation in social insects. Commun Integr Biol 2:151–154 Clark R, Fewell J (2014) Transitioning from unstable to stable colony growth in the desert leafcutter ant Acromyrmex versicolor. Behav Ecol Sociobiol 68(1):163–171 Cornejo A, Dornhaus A, Lynch N, Nagpal R (2014) Task allocation in ant colonies. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), vol 8784. 28th international symposium on distributed computing, DISC 2014, Austin, pp 46–60 Couzin ID, Krause J, Franks NR, Levin SA (2005) Effective leadership and decision making in animal groups on the move. Nature 433:513–516 Deneubourg J-L, Goss S, Pasteels JM, Fresneau D, Lachaud JP (1987) Self-organization mechanisms in ant societies II. Learning in foraging and division of labour. Exp Suppl 54:177–196 Deneubourg J-L, Goss S (1989) Collective patterns and decision-making. Ethol Ecol Evolut 1:295–311 Detrain C, Deneubourg J-L (2006) Self-organized structures in a superorganism: do ants behave like molecules? Phys Life Rev 3:162–187 Detrain C, Deneubourg J-L (2008) Collective decision-making and foraging patterns in ants and honeybees. Adv Insect Physiol 35:123–173 Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern-Part B 26:29–41 Dornhaus A (2008) Specialization does not predict individual efficiency in an ant. PLoS Biol 6(11):e285 Dornhaus A, Holley J-A, Pook VG, Worswick G, Franks NR (2008) Why do not all workers work? Colony size and workload during emigrations in the ant Temnothorax albipennis. Behav Ecol Sociobiol 63(1):43–51 Dolezal AG, Johnson J, Holldobler B, Amdam GV (2013) Division of labor is associated with age-independent changes in ovarian activity in Pogonomyrmex californicus harvester ants. J Insect Physiol 59(4):519–524 Eberl HJ, Frederick MR, Kevan PG (2010) Importance of brood maintenance terms in simple models of the honeybee-varroa destructor-acute bee paralysis virus complex. Electron J Differ Equ 19:85–98 Fewell JH (2003) Social insect networks. Science 301:1867–1870 Fewell JH, Schmidt S, Taylor T (2009) Division of labor in the context of complexity. In: Gadau J, Fewell JH (eds) Organization of insect societies: from genomes to sociocomplexity. Harvard University Press Franks NR, Dornhaus A, Marshall JAR, Moncharmont F-XD (2009) The dawn of a golden age in mathematical insect sociobiology. In: Gadau J, Fewell JH (eds) Organization of insect societies: from genome to socio-complexity. Harvard University Press, Cambridge, pp 437–459 Gadau J, Fewell JH (2009) Organization of insect societies: from genome to socio-complexity. Harvard University Press, Cambridge Gautrais J, Theraulaz G, Deneubourg J-L, Anderson C (2002) Emergent polyethism as a consequence of increased colony size in insect societies. J Theor Biol 215:363–373 Giraldo Y, Traniello JA (2014) Worker senescence and the sociobiology of aging in ants. Behav Ecol Sociobiol 68(12):1901–1919 Giray T, Guzmn-Novoa E, Aron CW, Zelinsky B, Fahrbach SE, Robinson GE (2000) Genetic variation in worker temporal polyethism and colony defensiveness in the honey bee, Apis mellifera. Behav Ecol 11(1):44–55 Gordon DM (1996) The organization of work in social insect colonies. Nature 380:121–124 Gordon DM (1999) Interaction patterns and task allocation in ant colonies. Birkhuser Verlag, Basel Gordon DM, Mehdiabadi NJ (1999) Encounter rate and task allocation in harvester ants. Behav Ecol Sociobiol 45:370–377 Gordon DM (2003) The organization of work in social insect colonies. Complexity 8:43–46 Gordon DM (2010) Ant encounters: interaction networks and colony behavior. Princeton University Press, Princeton Hamann H, Karsai I, Schmickl T (2013) Time delay implies cost on task switching: a model to investigate the efficiency of task partitioning. Bull Math Biol 75:1181–1206 Hee JJ, Holway DA, Suarez AV, Case TJ (2000) Role of propagule size in the success of incipient colonies of the invasive argentine ant. Conserv Biol 14(2):559–563 Hou C, Kaspari M, Zanden HBV, Gillooly JF (2010) Energetic basis of colonial living in social insects. Proc Natl Acad Sci USA 107(8):3634–3638 Holbrook CT, Clark RM, Jeanson R, Bertram SM, Kukuk PF, Fewell JH (2009) Emergence and consequences of division of labor in associations of normally solitary sweat bees. Ethology 115:301–310 Holbrook CT, Barden P, Fewell JH (2011) Division of labor increases with colony size in the ant Pogonomyrmex californicus. Behav Ecol 22:960–966 Holbrook CT, Kukuk PF, Fewell JH (2013a) Increased group size promotes task specialization in a normally solitary halictine bee. Behavior 150:1449–1466 Holbrook CT, Eriksson TH, Overson RP, Gadau J, Fewell JH (2013b) Colony-size effects on task organization in the harvester ant Pogonomyrmex californicus. Insect Soc 60(2):191–201 Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge Hölldobler B, Wilson EO (2009) The super-organism: the beauty, elegance, and strangeness of insect societies. WW Norton & Co, New York Ingram KK, Pilko A, Heer J, Gordon DM (2013) Colony life history and lifetime reproductive success of red harvester ant colonies. J Anim Ecol 82:540–550 Jandt JM, Huang E, Dornhaus A (2009) Weak specialization of workers inside a bumble bee nest. Behav Ecol Sociobiol 63:1829–1836 Jandt JM, Dornhaus A (2011) Competition and cooperation: bumblebee spatial organization and division of labor may affect worker reproduction late in life? Behav Ecol Sociobiol 65:2341–2349 Jandt JM, Robins NS, Moore RE, Dornhaus A (2012) Individual bumblebees vary in response to disturbance: a test of the defensive reserve hypothesis? Insectes Sociaux 59:313–321 Jeanson R, Fewell JH, Gorelick R, Bertram S (2007) Emergence of increased division of labor as a function of group size. Behav Ecol Sociobiol 62:289–298 Julian GE, Cahan S (1999) Undertaking specialization in the desert leaf-cutter ant Acromyrmex versicolor. Anim Behav 58:437–452 Johnson BR (2010) Division of labor in honeybees: form, function, and proximate mechanisms. Behav Ecol Sociobiol 64(3):305–316 Kang Y, Clark R, Makiyama M, Fewell J (2011) Mathematical modeling on obligate mutualism: interactions between leaf-cutter ants and their fungus garden. J Theor Biol 289:116–127 Kang Y, Fewell J (2015) Coevolutionary dynamics of a host-parasite interaction model: obligatory v.s. facultative parasitism. Nat Resour Model 28(4):398–455 Kang Y, Blanco K, Davis T, Wang Y, DeGrandi-Hoffman G (2016) Disease dynamics of honeybees with Varroa destructor as parasite and virus vector. Math Biosci (in press) Karsai I, Theraulaz G (1995) Nest building in a social wasp: postures and constraints. Sociobiology 26:83–114 Karsai I, Wenzel JW (1998) Productivity, individual-level and colony-level flexibility and organization of work as consequences of colony size. Proc R Soc B: Biol Sci 256:1261–1268 Karsai I, Schmickl T (2011) Regulation of task partitioning by a common stomach: a model of nest construction in social wasps. Behav Ecol 22(4):819–830 Karsai I, Phillips MD (2012) Regulation of task differentiation in wasp societies: a bottom-up model of the common stomach. J Theor Biol 294:98–113 Keller L (2009) Adaptation and the genetics of social behaviour. Philos Trans R Soc B: Biol Sci 364:3209–3216 Kerhoas D, Perwitasari-Farajallah D, Agil M, Widdig A, Engelhardt A (2014) Social and ecological factors influencing offspring survival in wild macaques. Behav Ecol 25:1164–1172 Khuong A, Gautrais J, Perna A, Sbaï C, Combe M, Kuntz P, Jost C, Theraulaz G (2016) Stigmergic construction and topochemical information shape ant nest architecture. Proc Natl Acad Sci USA. doi:10.1073/pnas.1509829113 Kwapich CL, Tschinkel WR (2013) Demography, demand, death, and the seasonal allocation of labor in the Florida harvester ant (Pogonomyrmex badius). Behav Ecol Sociobiol 67:2011–2027 Marshall JAR, Bogacz R, Dornhaus A, Planque R, Kovacs T, Franks NR (2009) On optimal decision-making in brains and social insect colonies. J R Soc Interface 6:1065–1074 Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. Oxford University Press, Oxford Millor J, Pham-Delegue M, Deneubourg J-L, Camazines S (1999) Self-organized defensive behavior in honeybees. Proc Natl Acad Sci USA 96:12611–12615 Muscedere ML, Willey TA, Traniello JFA (2009) Age and task efficiency in the ant Pheidole dentata: young minor workers are not specialist nurses. Anim Behav 77(4):911–918 Myerscough MR, Oldroyd BP (2004) Simulation models of the role of genetic variability in social insect task allocation. Insectes Sociaux 51(2):146–152 Naug D, Gadagkar R (1998) The role of age in temporal polyethism in a primitively eusocial wasp. Behav Ecol Sociobiol 42(1):37–47 O’Donnell S (1996) RAPD markers suggest genotypic effects on forager specialization in a eusocial wasp. Behav Ecol Sociobiol 38:83–88 O’Donnell S, Bulova SJ (2007) Worker connectivity: a review of the design of worker communication systems and their effects on task performance in insect societies. Insect Soc 54(3):203–210 Oster GF, Wilson EO (1978) Caste and ecology in the social insects. Princeton Univ. Press, Princeton Pacala SW, Gordon D, Godfray HCJ (1996) Effects of social group size on information transfer and task allocation. Evol Ecol 10:127–165 Page RE Jr, Mitchell SD (1990) Self-organization and adaptation in insect societies. In: Fine A, Forbes M, Wessels L (eds) Phil Sci Assoc 2:289–298 Page RE Jr, Mitchell SD (1998) Self-organization and the evolution of division of labor. Apidologie 29(1–2):171–190 Page RE Jr, Erber J (2002) Levels of behavioral organization and the evolution of division of labor. Naturwissenschaften 89:91–106 Pinter-Wollman N, Wollman R, Guetz A, Holmes S, Gordon DM (2011) The effect of individual variation on the structure and function of interaction networks in harvester ants. J R Soc Interface 8:1562–1573 Pinter-Wollman N, Hubler J, Holley JA, Franks NR, Dornhaus A (2012) How is activity distributed among and within tasks in Temnothorax ants? Behav Ecol Sociobiol 66:1407–1420 Porter SD, Tschinkel W (1985) Fire ant polymorphism: the ergonomics of brood production. Behav Ecol Sociobiol 16(4):323–336 Pratt SC (2009) Insect societies as model for collective decision making. In: Gadau J, Fewell JH (eds) Organization of insect societies: from genome to sociocomplexity. Harvard University Press, Cambridge, pp 503–524 Ratti V, Kevan PG, Eberl HJ (2013) A mathematical model for population dynamics in honeybee colonies infested with Varroa destructor and the acute bee paralysis virus. Can Appl Math Q 21(1):63–93 Ravary F, Lecoutey E, Kaminski G, Chline N, Jaisson P (2007) Individual experience alone can generate lasting division of labor in ants. Curr Biol 17(15):1308–1312 Robinson GE (1992) Regulation of division of labor in insect societies. Annu Rev Entomol 37(1):637–665 Robinson GE, Grozinger CM, Whitfield CW (2005) Sociogenomics: social life in molecular terms. Nat Rev Genet 6(4):257–270 Schmickl T, Crailsheim K (2007) HoPoMo: a model of honeybee intracolonial population dynamics and resource management. Ecol Model 204:219–245 Schmickl T, Crailsheim K (2008) TaskSelSim: a model of the self-organization of the division of labour in honeybees. Math Computer Model Dyn Syst 14(2):101–125 Seeley TD (1982) Adaptive significance of the age polyethism schedule in honeybee colonies. Behav Ecol Sociobiol 11(4):287–293 Seeley TD, Camazine S, Sneyd J (1991) Collective decision making in honey bees: how colonies choose among nectar sources. Behav Ecol Sociobiol 28:277–290 Seeley TD (2009) The wisdom of the hive: the social physiology of honey bee colonies. Harvard University Press, Cambridge Seid MA, Traniello JFA (2006) Age-related repertoire expansion and division of labor in Pheidole dentata (Hymenoptera: Formicidae): a new perspective on temporal polyethism and behavioral plasticity in ants. Behav Ecol Sociobiol 60(5):631–644 Sendova-Franks AB, Franks NR (1995) Spatial relationships within nests of the ant Leptothorax unifasciatus and their implications for the division of labour. Anim Behav 50(1):121–136 Smith CR, Tschinkel WR (2006) The sociometry and sociogenesis of reproduction in the Florida harvester ant Pogonomyrmex badius. J Insect Sci 6:1–11 Sumpter DT, Pratt S (2003) A modelling framework for understanding social insect foraging. Behav Ecol Sociobiol 53(3):131–144 Sumpter DT (2010) Collective animal behavior. Princeton University Press, Princeton Theraulaz G, Bonabeau E, Denuebourg J-N (1998) Response threshold reinforcements and division of labour in insect societies. Proc R Soc Lond B: Biol Sci 265(1393):327–332 Thieme HR (2003) Mathematics in population biology. Princeton University Press, Princeton Tschinkel WR (1999) Sociometry and sociogenesis of colony-level attributes of the Florida harvester ant (Hymenoptera: Formicidae). Ann Entomol Soc Am 92:80–89 Udiani O, Pinter-Wollman N, Kang Y (2015) Identifying robustness in the regulation of foraging of ant colonies using an interaction based model with backward bifurcation. J Theor Biol 365:61–75 Waibel M, Floreano D, Magnenat S, Keller L (2006) Division of labour and colony efficiency in social insects: effects of interactions between genetic architecture, colony kin structure and rate of perturbations. Proc R Soc B 273:1815–1823 Wakano JYK, Nakata K, Yamamura N (1998) Dynamic model of optimal age polyethism in social insects under stable and fluctuating environments. J Theor Biol 193:153–165 Watmough J, Camazine S (1995) Self-organized thermoregulation of honeybee clusters. J Theor Biol 176:391–402 Wilson EO (1968) The ergonomics of caste in the social insects. Am Nat 102:41–66 Wilson EO (1971) The insect societies. Harvard Univ. Press, Cambridge Wilson EO (1976) Behavioral discretization and number of castes in an ant species. Behav Ecol Sociobiol 1:141–154 Wilson EO (1980a) Caste and division of labor in leaf-cutter ants (Hymenoptera : Formicidae-atta) I. The overall pattern in A Soxdens. Behav Ecol Sociobiol 7:143–156 Wilson EO (1980b) Caste and division of labor in leaf-cutter ants (Hyman: Formicidae: AHa ) II. The ergonomics optimization of leaf-cutting. Behav Ecol Sociobiol 7:157–165 Wilson EO (1985a) The principles of caste evolution. In: Holldobler B, Lindauer M (eds) Experimental behavioral ecology and sociobiology. Gustav Fischer Verlag, Stuttgart, pp 307–324 Wilson EO (1985b) The sociogenesis of insect colonies. Science 228:1489–1495 Wilson EO (1987) Causes of ecological success-the case of the ants: the 6th Tansley lecture. J Anim Ecol 56:1–9