Dynamical Analysis of the Generalized Lorenz Systems
Tóm tắt
In this paper, global attractive sets of the generalized Lorenz system are studied according to Lyapunov stability theory and optimization theory. The method of constructing Lyapunov functions applied to the former chaotic dynamical systems is not applicable to the generalized Lorenz system. We overcome this difficulty by adding a cross term to the Lyapunov functions of the generalized Lorenz system.
Tài liệu tham khảo
Lorenz EN. Deterministic non-periods flows. J Atmos Sci.1963;20:130–41.
Kuznetsov N, Mokaev T, Vasilyev P. Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor. Commun Nonlinear Sci Numer Simul. 2014;19(4):1027–34.
Leonov G. Bounds for attractors and the existence of homoclinic orbits in the Lorenz system. J Appl Math Mech. 2001;65(1):19–32.
Leonov G, Bunin A, Koksch N. Attractor localization of the Lorenz system. Z Angew Math Mech. 1987;67:649–56.
Chen G, Lu J. Dynamical Analysis, Control and Synchronization of the Lorenz Systems Family. Beijing: Science Press; 2003.
Leonov G. General existence conditions of homoclinic trajectories in dissipative systems. Lorenz, Shimizu-Morioka, Lu and Chen systems. Phys Lett A. 2012;376:3045–50.
Bragin V, Vagaitsev V, Kuznetsov N, Leonov G. Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits. J Comput Syst Sci Int. 2011;50:511–43.
Leonov G, Kuznetsov N. Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int J Bifurc Chaos Appl Sci Eng. 2013;23:1330002.
Leonov G, Kuznetsov N, Kiseleva M, Solovyeva E, Zaretskiy A. Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor. Nonlinear Dyn. 2014;77:277–88.
Liu H, Wang X, Zhu Q. Asynchronous anti-noise hyper chaotic secure communication system based on dynamic delay and state variables switching. Phys Lett A. 2011;375(30–31):2828–35.
Leonov GA. Existence criterion of homoclinic trajectories in the Glukhovsky-Dolzhansky system. Phys Lett A. 2015;379(6):524–28.
Leonov G, Kuznetsov N, Vagaitsev V. Localization of hidden Chua’s attractors. Phys Lett A. 2011;375:2230–3.
Leonov G, Boichenko V. Lyapunov’s direct method in the estimation of the Hausdorff dimension of attractors. Acta Appl Math. 1992;26:1–60.
Leonov G, Kuznetsov N, Vagaitsev V. Hidden attractor in smooth Chua systems. Physica D. 2012;241(18):1482–6.
Leonov GA. The Tricomi problem for the Shimizu-Morioka dynamical system. Dokl Math. 2012;86(3):850–3.
Zhang F, Mu C, Li X. On the boundedness of some solutions of the Lu system. Int J Bifurc Chaos Appl Sci Eng. 2012;22:1250015.
Zhang F, Zhang G. Boundedness solutions of the complex Lorenz chaotic system. Appl Math Comput. 2014;243:12–23.
Zhang F, Mu C, Zheng P, Lin D, Zheng G. The dynamical analysis of a new chaotic system and simulation. Math Methods Appl Sci. 2014;37:1838–46.
Zhang F, Shu Y, Yang H. Bounds for a new chaotic system and its application in chaos synchronization. Commun Nonlinear Sci Numer Simul. 2011;16:1501–8.
Pogromsky A, Santoboni G, Nijmeijer H. An ultimate bound on the trajectories of the Lorenz system and its applications. Nonlinearity. 2003;16:1597–1605.
Yu P, Liao X, Xie S, Fu Y. A constructive proof on the existence of globally exponentially attractive set and positive invariant set of general Lorenz family. Commun Nonlinear Sci Numer Simul. 2009;14(7):2886–96.
Sun Y. A simple observer design of the generalized Lorenz chaotic systems. Phys Lett A. 2010;374:933–7.
Lu J, Chen G, Cheng D, Celikovsky S. Bridge the gap between the Lorenz system and the Chen system. Int J Bifurc Chaos Appl Sci Eng. 2002;12(12):2917–26.
Chen G, Ueta T. Yet another chaotic attractor. Int J Bifurc Chaos Appl Sci Eng. 1999;9(7):1465–6.
Lu J, Chen G. A new chaotic attractor coined. Int J Bifurc Chaos Appl Sci Eng. 2002;12(3):659–61.
Leonov GA, Kuznetsov NV. On differences and similarities in the analysis of Lorenz, Chen and Lu systems. Appl Math Comput. 2015;256:334–43.