Dynamic texture recognition and localization in machine vision for outdoor environments

Computers in Industry - Tập 98 - Trang 1-13 - 2018
Vagia Kaltsa1,2, Konstantinos Avgerinakis1, Alexia Briassouli1, Ioannis Kompatsiaris1, Michael G. Strintzis2
1Centre for Research and Technology Hellas (CERTH), 6th km Charilaou-Thermi Rd, P.O. Box 60361, GR 57001 Thermi, Thessaloniki, Greece
2Aristotle University of Thessaloniki (AUTH), University Campus, 54124 Thessaloniki, Greece

Tài liệu tham khảo

Avgerinakis, 2017, Lbp-flow and hybrid encoding for real-time water and fire classification, IEEE International Conference on Computer Vision Workshop (ICCVW), 10.1109/ICCVW.2017.56 Fritz, 2005, Integrating representative and discriminant models for object category detection, 1363 Doretto, 2003, Dynamic textures, Int. J. Comput. Vis., 51, 91, 10.1023/A:1021669406132 Chan, 2008, Modeling, clustering, and segmenting video with mixtures of dynamic textures, IEEE Trans. Pattern Anal. Mach. Intell., 30, 909, 10.1109/TPAMI.2007.70738 Chan, 2009, Layered dynamic textures, IEEE Trans. Pattern Anal. Mach. Intell., 31, 1862, 10.1109/TPAMI.2009.110 Mumtaz, 2013, Clustering dynamic textures with the hierarchical em algorithm for modeling video, IEEE Trans. Pattern Anal. Mach. Intell., 35, 1606, 10.1109/TPAMI.2012.236 Dimitropoulos, 2017, Classification of multidimensional time-evolving data using histograms of Grassmannian points, IEEE Trans. Circuits Syst. Video Technol., PP, 1 Shroff, 2010, Moving vistas: exploiting motion for describing scenes, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1911 Oliva, 2001, Modeling the shape of the scene: a holistic representation of the spatial envelope, Int. J. Comput. Vis., 42, 145, 10.1023/A:1011139631724 Chen, 2013, Automatic dynamic texture segmentation using local descriptors and optical flow, IEEE Trans. Image Process., 22, 326, 10.1109/TIP.2012.2210234 Kaltsa, 2015, Swarm intelligence for detecting interesting events in crowded environments, IEEE Trans. Image Process., 24, 2153, 10.1109/TIP.2015.2409559 Derpanis, 2012, Dynamic scene understanding: the role of orientation features in space and time in scene classification, IEEE Conference on Computer Vision and Pattern Recognition, 1306 Feichtenhofer, 2014, Bags of spacetime energies for dynamic scene recognition, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Zhao, 2006, Local binary pattern descriptors for dynamic texture recognition, 18th International Conference on Pattern Recognition (ICPR’06), vol. 2, 211, 10.1109/ICPR.2006.768 Zhao, 2012, Rotation-invariant image and video description with local binary pattern features, IEEE Trans. Image Process., 21, 1465, 10.1109/TIP.2011.2175739 Mettes, 2017, Water detection through spatio-temporal invariant descriptors, Comput. Vis. Image Understand., 154, 182, 10.1016/j.cviu.2016.04.003 Amiaz, 2007, 848 Chen, 2016, Markov random field based dynamic texture segmentation using inter-scale context, IEEE International Conference on Information and Automation (ICIA), 1924, 10.1109/ICInfA.2016.7832133 Wang, 1990, Texture classification using texture spectrum, Pattern Recogn., 23, 905, 10.1016/0031-3203(90)90135-8 Liu, 2012, Extended local binary patterns for texture classification, Image Vis. Comput., 30, 86, 10.1016/j.imavis.2012.01.001 Qian, 2011, Plbp: an effective local binary patterns texture descriptor with pyramid representation, Pattern Recogn., 44, 2502, 10.1016/j.patcog.2011.03.029 Shan, 2009, Facial expression recognition based on local binary patterns: a comprehensive study, Image Vis. Comput., 27, 803, 10.1016/j.imavis.2008.08.005 Ahonen, 2006, Face description with local binary patterns: application to face recognition, IEEE Trans. Pattern Anal. Mach. Intell., 28, 2037, 10.1109/TPAMI.2006.244 Perronnin, 2010, 143 Avgerinakis, 2016, Activity detection using sequential statistical boundary detection (ssbd), Comput. Vis. Image Understand., 144, 46, 10.1016/j.cviu.2015.10.013 de Souza, 2016, 697 Achanta, 2012, Slic superpixels compared to state-of-the-art superpixel methods, IEEE Trans. Pattern Anal. Mach. Intell., 34, 2274, 10.1109/TPAMI.2012.120 Péteri, 2010, Dyntex: a comprehensive database of dynamic textures, Pattern Recogn. Lett., 31, 1627, 10.1016/j.patrec.2010.05.009 Mettes, 2014, On the segmentation and classification of water in videos, International Conference on Computer Vision Theory and Applications (VISAPP), vol. 1, 283 Farnebäck, 2003, 363 Dubois, 2015, Characterization and recognition of dynamic textures based on the 2d+t curvelet transform, Signal Image Video Process., 9, 819, 10.1007/s11760-013-0532-4 Smith, 2002, Video texture indexing using spatio-temporal wavelets, Proceedings. International Conference on Image Processing, vol. 2, 10.1109/ICIP.2002.1039981 Xu, 2015, Classifying dynamic textures via spatiotemporal fractal analysis, Pattern Recogn., 48, 3239, 10.1016/j.patcog.2015.04.015 Xu, 2012, Scale-space texture description on sift-like textons, Comput. Vis. Image Understand., 116, 999, 10.1016/j.cviu.2012.05.003 Ji, 2013, Wavelet domain multifractal analysis for static and dynamic texture classification, IEEE Trans. Image Process., 22, 286, 10.1109/TIP.2012.2214040 Qi, 2016, Dynamic texture and scene classification by transferring deep image features, Neurocomputing, 171, 1230, 10.1016/j.neucom.2015.07.071 Mumtaz, 2015, A scalable and accurate descriptor for dynamic textures using bag of system trees, IEEE Trans. Pattern Anal. Mach. Intell., 37, 697, 10.1109/TPAMI.2014.2359432 Nister, 2006, Scalable recognition with a vocabulary tree, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 2, 2161, 10.1109/CVPR.2006.264 Grossberg, 2009, Artscene: a neural system for natural scene classification, J. Vis., 9, 6, 10.1167/9.4.6 Marszalek, 2009, Actions in context, IEEE Conference on Computer Vision and Pattern Recognition, 2929