Dynamic strain ageing in an AlMg alloy at different strain rates and temperatures: Experiments and constitutive modelling

International Journal of Plasticity - Tập 151 - Trang 103215 - 2022
Jianbin Xu1,2, Bjørn Holmedal1, Odd Sture Hopperstad2, Tomáš Mánik1, Knut Marthinsen1
1Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Alfred Getz vei 2, NO-7491 Trondheim, Norway
2Centre for Advanced Structural Analysis (CASA), Norwegian University of Science and Technology (NTNU), Richard Birkelands vei 1a, NO-7491 Trondheim, Norway

Tài liệu tham khảo

Abbadi, 2002, On the characteristics of Portevin–Le Chatelier bands in aluminum alloy 5182 under stress-controlled and strain-controlled tensile testing, Mater. Sci. Eng. A, 337, 194, 10.1016/S0921-5093(02)00036-9 Abed, 2017, Flow stress and damage behavior of C45 steel over a range of temperatures and loading rates, J. Eng. Mater. Technol., 139, 10.1115/1.4035488 Belotteau, 2009, Mechanical behavior and crack tip plasticity of a strain aging sensitive steel, Mater. Sci. Eng. A, 526, 156, 10.1016/j.msea.2009.07.013 Benallal, 2008, An experimental and numerical investigation of the behaviour of AA5083 aluminium alloy in presence of the Portevin–Le Chatelier effect, Int. J. Plast., 24, 1916, 10.1016/j.ijplas.2008.03.008 Bloom, 1985, Deformation behavior of 4; Mo alloys, Acta Metall., 33, 265, 10.1016/0001-6160(85)90144-0 Böhlke, 2009, Geometrically non-linear modeling of the Portevin–Le Chatelier effect, Comput. Mater. Sci., 44, 1076, 10.1016/j.commatsci.2008.07.036 Brechet, 1995, On the influence of precipitation on the Portevin-Le Chatelier effect, Acta Metall. Mater., 43, 955, 10.1016/0956-7151(94)00334-E Bühler, 1963, Die durch Plastizitätsuntersuchungen bestimmte Stapelfehlerenergie von Silber im Temperaturbereich 172° K bis 873° K, Physica Status Solidi (B), 3, 886, 10.1002/pssb.19630030508 Chatterjee, 2015, Investigation of the dynamic strain aging and mechanical properties in alloy-625 with different microstructures, Metall. Mater. Trans. A, 46, 1097, 10.1007/s11661-014-2717-z Chen, 1998 Chen, 1991 Choudhary, 2014, Activation energy for serrated flow in type 316 L (N) austenitic stainless steel, Mater. Sci. Eng. A, 603, 160, 10.1016/j.msea.2014.02.083 Cottrell, 1949, Dislocation theory of yielding and strain ageing of iron, Proc. Phys. Soc. London Sect. A, 62, 49, 10.1088/0370-1298/62/1/308 Cottrell, 1955, Effects of temperature on the plastic properties of aluminium crystals, Proc. R. Soc. Lond. Series A Math. Phys. Sci., 233, 17 Curtin, 2006, A predictive mechanism for dynamic strain ageing in aluminium–magnesium alloys, Nat. Mater., 5, 875, 10.1038/nmat1765 Deschamps, 1996, Study of large strain deformation of dilute solid solutions of Al-Cu using channel-die compression, Mater. Sci. Eng. A, 207, 143, 10.1016/0921-5093(95)09992-1 Fagerholt, E., 2012. Field measurements in mechanical testing using close-range photogrammetry and digital image analysis. Feng, 2017, Extension of the Mechanical Threshold Stress Model to Static and Dynamic Strain Aging: Application to AA5754-O, Metall. Mater. Trans. A, 48, 5591, 10.1007/s11661-017-4276-6 Follansbee, 1988, A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable, Acta Metall., 36, 81, 10.1016/0001-6160(88)90030-2 Follansbee, 2014 Fu, 2012, Two mechanisms for the normal and inverse behaviors of the critical strain for the Portevin–Le Chatelier effect, Acta Mater., 60, 6650, 10.1016/j.actamat.2012.08.035 Gopinath, 2009, Dynamic strain ageing in Ni-base superalloy 720Li, Acta Mater., 57, 1243, 10.1016/j.actamat.2008.11.005 Guillot, 1972, Phenomene portevin-le chatelier dans les alliages al-mg a hautes temperatures, en fonction de la concentration, Acta Metall., 20, 291, 10.1016/0001-6160(72)90191-5 Hähner, 1997, On the critical conditions of the Portevin-Le Chatelier effect, Acta Mater., 45, 3695, 10.1016/S1359-6454(97)00066-9 Hayes, 1983, On a proposed theory for the disappearance of serrated flow in fcc Ni alloys, Acta Metall., 31, 365, 10.1016/0001-6160(83)90213-4 Hayes, 1984, A proposed model for the disappearance of serrated flow in two Fe alloys, Acta Metall., 32, 259, 10.1016/0001-6160(84)90054-3 Holmedal, 2007, On the formulation of the mechanical threshold stress model, Acta Mater., 55, 2739, 10.1016/j.actamat.2006.12.011 Jacobs, 2019, Characterization of localized plastic deformation behaviors associated with dynamic strain aging in pipeline steels using digital image correlation, Int. J. Plast., 123, 70, 10.1016/j.ijplas.2019.07.010 Kabirian, 2014, Negative to positive strain rate sensitivity in 5xxx series aluminum alloys: Experiment and constitutive modeling, Int. J. Plast., 55, 232, 10.1016/j.ijplas.2013.11.001 Keralavarma, 2014, Quantum-to-continuum prediction of ductility loss in aluminium–magnesium alloys due to dynamic strain aging, Nat. Commun., 5, 1, 10.1038/ncomms5604 Klepaczko, 1975, Thermally activated flow and strain rate history effects for some polycrystalline FCC metals, Mater. Sci. Eng., 18, 121, 10.1016/0025-5416(75)90078-6 Klusemann, 2015, Thermomechanical characterization of Portevin–Le Châtelier bands in AlMg3 (AA5754) and modeling based on a modified Estrin–McCormick approach, Int. J. Plast., 67, 192, 10.1016/j.ijplas.2014.10.011 Kocks, 1985, Strain aging and strain hardening in Ni-C alloys, Acta Metall., 33, 623, 10.1016/0001-6160(85)90026-4 Kocks, 2003, Physics and phenomenology of strain hardening: the FCC case, Prog. Mater Sci., 48, 171, 10.1016/S0079-6425(02)00003-8 Kreyca, 2018, State parameter-based constitutive modelling of stress strain curves in Al-Mg solid solutions, Int. J. Plast., 103, 67, 10.1016/j.ijplas.2018.01.001 Kubin, 1990, Evolution of dislocation densities and the critical conditions for the Portevin-Le Chatelier effect, Acta Metall. Mater., 38, 697, 10.1016/0956-7151(90)90021-8 Lee, 2021, Macroscopic and microscopic characterizations of Portevin-LeChatelier effect in austenitic stainless steel using high-temperature digital image correlation analysis, Acta Mater., 205, 10.1016/j.actamat.2020.116560 Ling, 1990, Strain rate sensitivity and transient behaviour in an Al-Mg-Si alloy, Acta Metall. Mater., 38, 2631, 10.1016/0956-7151(90)90275-L Lloyd, 1972, Dynamic strain ageing as a strengthening mechanism, Mater. Sci. Eng., 10, 75, 10.1016/0025-5416(72)90070-5 Louat, 1981, On the theory of the Portevin-Le Chatelier effect, Scr. Metall., 15, 1167, 10.1016/0036-9748(81)90290-8 Mansouri, 2016, Thermo-mechanical modeling of Portevin–Le Châtelier instabilities under various loading paths, Int. J. Mech. Sci., 115, 676, 10.1016/j.ijmecsci.2016.08.001 Marsh, 2017, Serrated tensile flow in inconel X750 sheets: Effect of heat treatment, Mater. Sci. Eng. A, 707, 136, 10.1016/j.msea.2017.08.093 Max, 2014, A re-examination of the Portevin-Le Chatelier effect in alloy 718 in connection with oxidation-assisted intergranular cracking, Metall. Mater. Trans. A, 45, 5431, 10.1007/s11661-014-2508-6 Mazière, 2012, Investigations on the Portevin Le Chatelier critical strain in an aluminum alloy, Comput. Mater. Sci., 52, 68, 10.1016/j.commatsci.2011.05.039 McCormick, 1972, A model for the Portevin-Le Chatelier effect in substitutional alloys, Acta Metall., 20, 351, 10.1016/0001-6160(72)90028-4 McCormick, 1988, Theory of flow localisation due to dynamic strain ageing, Acta Metall., 36, 3061, 10.1016/0001-6160(88)90043-0 Meng, 2019, The effect of large plastic deformation on elevated temperature mechanical behavior of dynamic strain aging Al-Mg alloys, Acta Mater., 181, 67, 10.1016/j.actamat.2019.09.024 Mesarovic, 1995, Dynamic strain aging and plastic instabilities, J. Mech. Phys. Solids, 43, 671, 10.1016/0022-5096(95)00010-G Mulford, 1979, New observations on the mechanisms of dynamic strain aging and of jerky flow, Acta Metall., 27, 1125, 10.1016/0001-6160(79)90130-5 Nemat-Nasser, 1999, Mechanical properties and deformation mechanisms of a commercially pure titanium, Acta Mater., 47, 3705, 10.1016/S1359-6454(99)00203-7 Nes, 1997, Modelling of work hardening and stress saturation in FCC metals, Prog. Mater Sci., 41, 129, 10.1016/S0079-6425(97)00032-7 Penning, 1972, Mathematics of the portevin-le chatelier effect, Acta Metall., 20, 1169, 10.1016/0001-6160(72)90165-4 Pham, 2015, Thermally-activated constitutive model including dislocation interactions, aging and recovery for strain path dependence of solid solution strengthened alloys: Application to AA5754-O, Int. J. Plast., 75, 226, 10.1016/j.ijplas.2014.09.010 Picu, 2004, A mechanism for the negative strain-rate sensitivity of dilute solid solutions, Acta Mater., 52, 3447, 10.1016/j.actamat.2004.03.042 Picu, 2005, Strain rate sensitivity of the commercial aluminum alloy AA5182-O, Mater. Sci. Eng. A, 390, 334, 10.1016/j.msea.2004.08.029 Picu, 2004, Atomistic study of pipe diffusion in Al–Mg alloys, Acta Mater., 52, 161, 10.1016/j.actamat.2003.09.002 Portevin, 1923, Sur un phénomène observé lors de l'essai de traction d'alliages en cours de transformation, Comp. Rend. Acad. Sci. Paris, 176, 507 Rao, 2019, Dynamic strain aging, deformation and fracture behaviour of the nickel base superalloy Inconel 617, Mater. Sci. Eng. A, 742, 44, 10.1016/j.msea.2018.10.123 Räuchle, 1973, Der Portevin-Le Chatelier-effekt bei α-kupfer-zinn-legierungen, Mater. Sci. Eng., 12, 147, 10.1016/0025-5416(73)90004-9 Ren, 2017, A constitutive model accounting for strain ageing effects on work-hardening. Application to a C–Mn steel, Comptes Rendus Mécanique, 345, 908, 10.1016/j.crme.2017.09.005 Ren, 2019, Portevin-Le Chatelier effect triggered by complex loading paths in an Al–Cu aluminium alloy, Philos. Mag., 99, 659, 10.1080/14786435.2018.1550296 Ren, 2021, Effect of Lüders and Portevin–Le Chatelier localization bands on plasticity and fracture of notched steel specimens studied by DIC and FE simulations, Int. J. Plast., 136, 10.1016/j.ijplas.2020.102880 Rusinek, 2009, Thermo-viscoplastic constitutive relation for aluminium alloys, modeling of negative strain rate sensitivity and viscous drag effects, Materials & Design, 30, 4377, 10.1016/j.matdes.2009.04.011 Sakthivel, 2012, Effect of temperature and strain rate on serrated flow behaviour of Hastelloy X, Mater. Sci. Eng. A, 534, 580, 10.1016/j.msea.2011.12.011 Sleeswijk, 1957, On the ductility of iron at 4.2-degrees-K, Acta Metall., 5, 764, 10.1016/0001-6160(57)90081-0 Sleeswyk, 1958, Slow strain-hardening of ingot iron, Acta Metall., 6, 598, 10.1016/0001-6160(58)90101-9 Soare, 2008, Solute strengthening of both mobile and forest dislocations: The origin of dynamic strain aging in fcc metals, Acta Mater., 56, 4046, 10.1016/j.actamat.2008.04.027 Song, 2020, Constitutive models for dynamic strain aging in metals: Strain rate and temperature dependences on the flow stress, Materials, 13, 1794, 10.3390/ma13071794 Springer, 1995, On a method to determine directly the waiting time of arrested dislocations and the elementary strain in dynamic strain ageing, Scr. Metall. Mater., 32, 1771, 10.1016/0956-716X(95)00003-E Swaminathan, 2015, Investigation using digital image correlation of Portevin-Le Chatelier Effect in Hastelloy X under thermo-mechanical loading, Int. J. Plast., 64, 177, 10.1016/j.ijplas.2014.09.001 Taylor, 1934, The mechanism of plastic deformation of crystals. Part I.—Theoretical, Proc. R. Soc. Lond. Series A Contain. Pap. Math. Phys. Charact., 145, 362 Van den Beukel, 1975, Theory of the effect of dynamic strain aging on mechanical properties, Physica Status Solidi (A), 30, 197, 10.1002/pssa.2210300120 Van den Beukel, 1982, The strain dependence of static and dynamic strain-aging, Acta Metall., 30, 1027, 10.1016/0001-6160(82)90211-5 Voyiadjis, 2020, A physically based constitutive model for dynamic strain aging in Inconel 718 alloy at a wide range of temperatures and strain rates, Acta Mech., 231, 19, 10.1007/s00707-019-02508-6 Voyiadjis, 2019, Constitutive model for metals with dynamic strain aging, Mech. Mater., 129, 352, 10.1016/j.mechmat.2018.12.012 Wang, 2012, Experimental and numerical study of dynamic strain ageing and its relation to ductile fracture of a C–Mn steel, Mater. Sci. Eng. A, 547, 19, 10.1016/j.msea.2012.03.069 Wang, 2015, The third-type of strain aging and the constitutive modeling of a Q235B steel over a wide range of temperatures and strain rates, Int. J. Plast., 65, 85, 10.1016/j.ijplas.2014.08.017 Yuzbekova, 2017, Effect of microstructure on continuous propagation of the Portevin–Le Chatelier deformation bands, Int. J. Plast., 96, 210, 10.1016/j.ijplas.2017.05.004 Zavattieri, 2009, Spatio-temporal characteristics of the Portevin–Le Châtelier effect in austenitic steel with twinning induced plasticity, Int. J. Plast., 25, 2298, 10.1016/j.ijplas.2009.02.008 Xu, J., Hopperstad, O.S., Holmedal, B., Maník, T., Marthinsen, K., 2022b. On the spatio-temporal characteristics of the Portevin-Le Chatelier effect in aluminium alloy AA5182: an experimental and numerical study. To be published. Xu, J., Holmedal, B., Hopperstad, O.S., Maník, T., Marthinsen, K., 2022a. Constitutive models for the Portevin-Le Chatelier effect in an AA5182 alloy. To be published.