Dynamic response of buried fluid-conveying pipelines subjected to blast loading using shell theory

Arabian Journal for Science and Engineering - Tập 46 - Trang 4883-4893 - 2021
Xue Ling1, Y. F. Zhang2, Yan Qing Wang1,3
1Department of Mechanics, College of Sciences, Northeastern University, Shenyang, China
2School of Aerospace Engineering, Shengyang Aerospace University, Shenyang, China
3Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University, Shenyang, China

Tóm tắt

In this study, the dynamic response of buried fluid-conveying pipelines subjected to blast loading using the Love shell theory has been investigated. The fluid is considered as ideal fluid, and the velocity potential is used to describe the fluid pressure acting on the pipeline. The governing equations of the buried fluid-conveying pipelines are derived through Hamilton’s principle. The modal superposition method and the Newmark integral method are used to analyze the dynamic response of the pipelines under blast loading. Results show that the displacement amplitudes of the pipelines are larger in the soil with a higher acoustic impedance. The Winkler foundation can enhance the stiffness of the pipelines. Moreover, the increase in the scaled distance leads to the decrease in the displacement amplitudes of the pipelines. The increase in the fluid velocity results in the rise of the displacement amplitudes of the pipelines. In addition, the maximum displacement increases first and then decreases with the increase in length-to-radius ratio of the pipelines. With the increase in thickness-to-radius ratio, the maximum displacement of the pipelines tends to decrease.

Tài liệu tham khảo

Hashash, Y.M.; Hook, J.J.; Schmidt, B.; John, I.; Yao, C.: Seismic design and analysis of underground structures. Tunn. Undergr. Space Technol. 16(4), 247–293 (2001) Choo, Y.W.; Abdoun, T.H.; O’Rourke, M.J.; Ha, D.: Remediation for buried pipeline systems under permanent ground deformation. Soil Dynam. Earthq. Eng. 27(12), 1043–1055 (2007) Tsinidis, G.; Di Sarno, L.; Sextos, A.; Furtner, P.: Seismic fragility of buried steel natural gas pipelines due to axial compression at geotechnical discontinuities. Bull. Earthq. Eng. 18(3), 837–906 (2020) Tsinidis, G.; Di Sarno, L.; Sextos, A.; Furtner, P.: Optimal intensity measures for the structural assessment of buried steel natural gas pipelines due to seismically-induced axial compression at geotechnical discontinuities. Soil Dynam. Earthq. Eng. 131, 106030 (2020) Mokhtari, M.; Nia, A.A.: A parametric study on the mechanical performance of buried X65 steel pipelines under subsurface detonation. Arch. Civil Mech. Eng. 15(3), 668–679 (2015) Zhang, L.; Liang, Z.; Zhang, J.: Mechanical response of a buried pipeline to explosion loading. J. Fail. Anal. Prev. 16(4), 576–582 (2016) Rushton, N.; Schleyer, G.; Clayton, A.; Thompson, S.: Internal explosive loading of steel pipes. Thin-Walled Struct. 46(7–9), 870–877 (2008) Song, K.; Long, Y.; Ji, C.; Gao, F.; Chen, H.: Experimental and numerical studies on the deformation and tearing of X70 pipelines subjected to localized blast loading. Thin-Walled Structures 107, 156–168 (2016) Kanarachos, A.; Provatidis, C.: Determination of buried structure loads due to blast explosions. WIT Transactions on The Built Environment 35, 95–104 (1970) Nourzadeh, D.; Khorshid, S.; Takada, S.; Bargi, K.: Analytical proposal to damage assessment of buried continuous pipelines during external blast loading. Int. J. Civil Environ. Stru. Constr. Archit. Eng. 5(11), 515–520 (2011) Abedi, A.S.; Hataf, N.; Ghahramani, A.: Analytical solution of the dynamic response of buried pipelines under blast wave. Int. J. Rock Mech. Min. Sci. 88, 301–306 (2016) Kouretzis, G.P.; Bouckovalas, G.D.; Gantes, C.J.: Analytical calculation of blast-induced strains to buried pipelines. Int. J. Impact Eng 34(10), 1683–1704 (2007) Zhang, J.; Zhang, L.; Liang, Z.: Buckling failure of a buried pipeline subjected to ground explosions. Process Saf. Environ. Prot. 114, 36–47 (2018) Bang, B.; Park, H.-S.; Kim, J.-H.; Al-Deyab, S.S.; Yarin, A.L.; Yoon, S.S.: Simplified method for estimating the effect of a hydrogen explosion on a nearby pipeline. J. Loss Prev. Process Ind. 40, 112–116 (2016) Olarewaju, A.J.; Kameswara Rao, N.; Mannan, M.A.: Blast effects on underground pipes. Electron. J. Geotech. Eng. 15, 645–658 (2010) Chen, C.-H.; Sheen, Y.-N.; Wang, H.-Y.: Case analysis of catastrophic underground pipeline gas explosion in Taiwan. Eng. Fail. Anal. 65, 39–47 (2016) Mokhtari, M.; Nia, A.A.: The application of CFRP to strengthen buried steel pipelines against subsurface explosion. Soil Dynam. Earthq. Eng. 87, 52–62 (2016) Giannaros, E.; Kotzakolios, T.; Kostopoulos, V.: Blast response of composite pipeline structure using finite element techniques. J. Compos. Mater. 50(25), 3459–3476 (2016) Reddy, J.N.: Theory and analysis of elastic plates and shells. CRC Press, Boca Raton (2006) Amabili, M.; Pellicano, F.; Païdoussis, M.: Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid, part II: large-amplitude vibrations without flow. J. Sound Vib. 228(5), 1103–1124 (1999) Ma, G.; Zhou, H.; Lu, Y.; Chong, K.: In-structure shock of underground structures: a theoretical approach. Eng. Struct. 32(12), 3836–3844 (2010) Army: U. Fundamentals of protective design for conventional weapons. Technical manual TM, 5–855 (1986)