Dynamic response of acrylonitrile butadiene styrene under impact loading

Gbadebo Owolabi1, Alex Peterson1, Ed Habtour2, Jaret C. Riddick2, Michael Coatney2, Adewale Olasumboye1, Denzell Bolling1
1Department of Mechanical Engineering, Howard University, Washington, USA
2US Army Research Lab, Vehicle Technology Directorate, Aberdeen, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

ASTM International. (2004). Standard test method for tensile properties of plastics, Standard D 638-03 (pp. 1–15).

Berman, B. (2012). 3-D printing: the new industrial revolution. Business Horizons., 55, 155–162.

Djapic Oosterkamp, L., Ivankovic, A., & Venizelos, G. (2000). High strain rate properties of selected aluminium alloys. Materials Science and Engineering: A., 278, 225–235.

Dyskin, A. V., Estrin, Y., Kanel-Belov, A. J., & Pasternak, E. (2003). A new principle in design of composite materials: reinforcement by interlocked elements. Composites Science and Technology., 63, 483–491.

Khandelwal, S., Siegmund, T., Cipra, R. J., & Bolton, J. S. (2012). Transverse loading of cellular topologically interlocked materials. International Journal of Solids and Structures., 49, 2394–2403.

Kuhn, H., & Dana, M. (2000). ASM handbook: mechanical testing and evaluation (pp. 462–476). Materials Park, OH: The Materials Information Society.

Lee, W.-S., & Lin, C.-F. (1998). Plastic deformation and fracture behaviour of Ti–6Al–4V alloy loaded with high strain rate under various temperatures. Materials Science and Engineering A, 24, 48–59.

Lee, D.-G., Kim, Y. G., Nam, D.-H., Hur, S.-M., & Lee, S. (2005). Dynamic deformation behavior and ballistic performance of Ti–6Al–4V alloy containing fine α2 (Ti3Al) precipitates. Materials Science and Engineering: A, 391, 221–234.

Malkin, R., Yasaee, M., Trask, R. S., & Bond, I. P. (2013). Bio-inspired laminate design exhibiting pseudo-ductile (graceful) failure during flexural loading. Composites Part A: Applied Science and Manufacturing., 54, 107–116.

Mulliken, A. D., & Boyce, M. C. (2006). Mechanics of the rate-dependent elastic–plastic deformation of glassy polymers from low to high strain rates. International Journal of Solids and Structures., 43, 1331–1356.

Odeshi, A. G., Al-ameeri, S., Mirfakhraei, S., Yazdani, F., & Bassim, M. N. (2006). Deformation and failure mechanism in AISI 4340 steel under ballistic impact. Theoretical and Applied Fracture Mechanics., 45, 18–24.

Qiang, L., Yongbo, X., & Bassim, M. N. (2003). Dynamic mechanical properties in relation to adiabatic shear band formation in titanium alloy-Ti17. Materials Science and Engineering: A, 358, 128–133.

Riddick J, Hall A, Haile M, Von Wahlde R, Cole D, and Biggs S. Effect of manufacturing parameters on failure in acrylonitrile-butadiane-styrene fabricated by fused deposition modeling, In 53rd ASME/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th ASME/ASME/AHS Adaptive Structures Conference 14th ASME.

Sen, D., & Buehler, M. J. (2010). Atomistically-informed mesoscale model of deformation and failure of bioinspired hierarchical silica nanocomposites. International Journal of Applied Mechanics., 2, 699–717.

Siviour, C. R., Walley, S. M., Proud, W. G., & Field, J. E. (2006). Mechanical behaviour of polymers at high rates of strain. Journal De Physique IV., 134, 949–955.

Smerd, R., Winkler, S., Salisbury, C., Worswick, M., Lloyd, D., & Finn, M. (2005). High strain rate tensile testing of automotive aluminum alloy sheet. International Journal of Impact Engineering., 32, 541–560.

Walley, S. M., & Field, J. E. (1994). Strain rate sensitivity of polymers in compression from low to high rates. Dymat Journal., 1, 211–227.

Yan, X., & Gu, P. (1996). A review of rapid prototyping technologies and systems. Computer-Aided Design., 28, 307–318.

Yazdani, F., Bassim, M. N., & Odeshi, A. G. (2009). The formation of adiabatic shear bands in copper during torsion at high strain rates. Procedia Engineering., 1, 225–228.