Các trò chơi đa tiêu chí động với các người chơi không đối xứng

Journal of Global Optimization - Tập 83 - Trang 521-537 - 2020
Anna N. Rettieva1,2,3
1School of Mathematics and Statistics, Qingdao University, Qingdao, People’s Republic of China
2Institute of Applied Mathematics of Shandong, Qingdao, People’s Republic of China
3Institute of Applied Mathematical Research, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia

Tóm tắt

Bài báo này trình bày một phương pháp mới để xây dựng hành vi hợp tác trong các trò chơi đa tiêu chí động với các người chơi không đối xứng. Để đạt được các điểm cân bằng không hợp tác và hợp tác, các ý tưởng về tối ưu hóa đa mục tiêu và lý thuyết trò chơi được kết hợp. Để xây dựng một điểm cân bằng Nash đa tiêu chí, giải pháp thương lượng được áp dụng. Để thiết kế một điểm cân bằng hợp tác đa tiêu chí, một sơ đồ thỏa hiệp đảm bảo việc thực hiện các điều kiện hợp lý được áp dụng. Khái niệm ổn định động được áp dụng cho các trò chơi đa tiêu chí động, và quy trình phân phối lợi tức nhất quán theo thời gian được trình bày. Một bài toán quản lý tài nguyên sinh học hai tiêu chí động với các yếu tố chiết khấu khác nhau được xem xét. Các chiến lược và lợi tức của người chơi được xác định dưới hành vi hợp tác và không hợp tác.

Từ khóa

#trò chơi đa tiêu chí #hành vi hợp tác #điểm cân bằng Nash #tối ưu hóa đa mục tiêu #lý thuyết trò chơi #quản lý tài nguyên sinh học

Tài liệu tham khảo

Adeyeye, A.D., Oyawale, A.F.: Multi-objective methods for welding flux performance optimization. RMZ-Mater. Geoenviron. 57(2), 251–270 (2010) Abou El MajdB., B., Desideri, J.A., Duvigneau, R.: Shape design in aerodynamics: parameterization and sensitivity. Eur. J. Comput. Mech. 17(1–2), 149–168 (2008) Basar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory. Academic, Bodmin (1995) Breton, M., Keoula, M.Y.: A great fish war model with asymmetric players. Ecol. Econ. 97, 209–223 (2014) Brown M., An B., Kiekintveld C., Ordonez F., Tambe M.: Multi-objective optimization for security games. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, Valencia (2012) Cheng R.Y.: Evolutionary game theoretic multi-objective optimization algorithms and their applications. Graduate Doctoral Dissertations (2017) Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.A.: Evolutionary Algorithms for Solving Multi-objective Problems, second edn. Springer, Berlin (2007) Cohon, J.L.: Multi-objective Programming and Planning. Academic Press, New York (1983) Das, I., Dennis, J.E.: A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multi-criteria optimization problems. Struct. Optim. 14, 63–69 (1997) Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, Hoboken (2001) Deh, K., Sundar, J., Roa, N., Chaudhuri, S.: Reference point based multi-objective optimization using evolutionary algorithms. Int. J. Comput. Intell. Res. 2(3), 273–286 (2006) Dhingra, A.K., Rao, S.S.: A cooperative fuzzy game theoretic approach to multiple objective design optimization. Eur. J. Oper. Res. 83, 547–567 (1995) Dlugosz, A., Jarosz, P., Schlieter, T.: Optimal design of electrothermal microactuators for many criteria by means of an immune game theory multiobjective algorithm. Appl. Sci. 9, 4654 (2019) Fonseca C.M., Fleming P.J.: Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: ICGA, Morgan Kaufmann, pp. 416–423 (1993) Gaudrie, D., Le Riche, R., Picheny, V., Enaux, B., Herbert, V.: Targeting solutions in Bayesian multi-objective optimization: sequential and batch versions. Ann. Math. Artif. Intell. 88, 187–212 (2020) Ghose, D.: A necessary and sufficient condition for Pareto-optimal security strategies in multicriteria matrix games. J. Optim. Theory Appl. 68, 463–481 (1991) Ghose, D., Prasad, U.R.: Solution concepts in two-person multicriteria games. J. Optim. Theory Appl. 63, 167–189 (1989) Haimes, Y.Y., Lasdon, S., Wismer, D.A.: On a bicriteria formulation of the problem of integrated system identification and system optimization. IEEE Trans. Syst. Man Cybern. 1(3), 296–297 (1971) Haurie, A.: A note on nonzero-sum differential games with bargaining solution. J. Optim. Theory Appl. 18, 31–39 (1976) Ignizio, J.P.: Goal Programming and Extensions. Heath, Boston (1976) Isermann, H., Steuer, R.E.: Computational experience concerning payoff tables and minimum criterion values over the efficient set. Eur. J. Oper. Res. 33(1), 91–97 (1988) Kalai, E.: Proportional solutions to bargaining situations: intertemporal utility comparisons. Econometrica 45(7), 1623–1630 (1977) Kalai, E., Smorodinsky, M.: Other solutions to Nash’s bargaining problem. Econometrica 43(3), 513–518 (1975) Kuhn, H.W., Tucker, A.W.: Nonlinear Programming, Proceedings of 2nd Berkeley Symposium, pp. 481–492. University of California Press, Berkeley (1951) Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000) Konak, A., Coit, D., Smith, A.: Multi-objective optimization using genetic algorithms: a tutorial. Reliab. Eng. Syst. Saf. 91(9), 992–1007 (2006) Lee, D., Gonzales, L.F., Periaux, J., Srinivas, K., Onate, E.: Hybrid-game strategies for multi-objective design optimization in engineering. Comput. Fluids 47, 189–204 (2011) Mazalov, V.V., Rettieva, A.N.: Fish wars and cooperation maintenance. Ecol. Model. 221, 1545–1553 (2010) Nash, J.: The bargaining problem. Econometrica 18(2), 155–162 (1950) Ohazulike A.E., Bliemer M.C.J., Still G., Berkum E.C.V.: Multi-objective road pricing: a game theoretic and multi-stakeholder approach, In: 91st Annual Meeting of the Transportation Research Board (TRB) Conference, 12-0719, Washington D.C. (2012) Periaux, J., Chen, H.Q., Mantel, B., Sefrioui, M., Sui, H.T.: Combining game theory and genetic algorithms with application to DDM-nozzle optimization problems. Finite Elem. Anal. Design 37, 417–429 (2001) Petrosjan, L.A.: Stable solutions of differential games with many participants. Vestnik Leningrad Univ. 19, 46–52 (1977) Petrosjan, L.A., Danilov, N.N.: Stable solutions of nonantagonostic differential games with transferable utilities. Vestnik Leningrad Univ. 1, 52–59 (1979) Petrosjan, L., Zaccour, G.: Time-consistent Shapley value allocation of pollution cost reduction. J. Econ. Dyn. Control 7, 381–398 (2003) Plourde, C.G., Yeung, D.: Harvesting of a transboundary replenishable fish stock: a noncooperative game solution. Mar. Resour. Econ. 6, 57–70 (1989) Pusillo, L., Tijs, S.: E-equilibria for multicriteria games. Ann. ISDG 12, 217–228 (2013) Rao, S.S., Freiheit, T.I.: Modified game theory approach to multiobjective optimization. J. Mech. Transm. Autom. Des. 113, 286–291 (1991) Rettieva, A.N.: Stable coalition structure in bioresource management problem. Ecol. Model. 235–236, 102–118 (2012) Rettieva, A.N.: A discrete-time bioresource management problem with asymmetric players. Autom. Remote Control 75(9), 1665–1676 (2014) Rettieva, A.N.: Equilibria in dynamic multicriteria games. IGTR 19(1), 1750002 (2017) Rettieva, A.N.: Dynamic multicriteria games with finite horizon. Mathematics 6(9), 156 (2018) Rettieva, A.N.: Cooperation in dynamic multicriteria games with random horizons. J. Glob. Optim. 76(3), 455–470 (2020) Salukvadze, M.E.: Vector-Valued Optimization Problems in Control Theory. Academic Press, New York (1979) Sefrioui M., Nash genetic algorithms: examples and applications. In: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 1, pp. 509–516 (2000) Shapley, L.S.: Equilibrium points in games with vector payoffs. Naval Res. Log. Q. 6, 57–61 (1959) Sim, K., Lee, D., Kim, J.Y.: Game theory based coevolutionary algorithm: a new computational coevolutionary approach. Int. J. Control Autom. Syst. 2, 463–474 (2004) Sorger, G.: Recursive Nash bargaining over a productive assert. J. Econ. Dyn. Control 30, 2637–2659 (2006) Tang, Z., Desideri, J.A., Periaux, J.: Multi-criterion aerodynamic shape-design optimization and inverse problems using control theory and Nash games. J. Optim. Theory Appl. 135, 599–622 (2007) Voorneveld, M., Vermeulen, D., Borm, P.: Axiomatizations of Pareto equilibria in multicriteria games. Games Econ. Behav. 28, 146–154 (1999) Voorneveld, M., Grahn, S., Dufwenberg, M.: Ideal equilibria in noncooperative multicriteria games. Math. Methods Oper. Res. 52, 65–77 (2000) Zafari F., Li J., Leung K.K., Towsley D., Swami A.: A game-theoretic approach to multi-objective resource sharing and allocation in mobile edge clouds. arXiv:1808.06937v2 (2018) Zeleny, M.: Compromising Programming, Multiple Criteria Decision Making. University of South Carolina Press, Columbia (1973) Zeleny, M.: Multiple Criteria Decision Making. McGraw-Hill, New York (1982) Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evolut. Comput. 3(4), 257–271 (1999)