Dynamic monitoring of single cell lysis in an impedance-based microfluidic device

Springer Science and Business Media LLC - Tập 18 - Trang 1-10 - 2016
Ying Zhou1, Srinjan Basu2, Ernest D. Laue2, Ashwin A. Seshia1
1Department of Engineering, Nanoscience Centre, University of Cambridge, Cambridge, UK
2Department of Biochemistry, University of Cambridge, Cambridge, UK

Tóm tắt

A microfluidic device that is capable of trapping and sensing dynamic variations in the electrical properties of individual cells is demonstrated. The device is applied to the real-time recording of impedance measurements of mouse embryonic stem cells (mESCs) during the process of membrane lysis, with the resulting changes in the electrical properties of cells during this process being quantitatively tracked over time. It is observed that the impedance magnitude decreases dramatically after cell membrane lysis. A significant shift in the phase spectrum is also observed during the time course of this process. By fitting experimental data to physical models, the electrical parameters of cells can be extracted and parameter variations quantified during the process. In the cell lysis experiments, the equivalent conductivity of the cell membrane is found to increase significantly due to pore formation in the membrane during lysis. An increase in the specific capacitance of the membrane is also observed. On the other hand, the conductivity of the cytoplasm is observed to decrease, which may be explained the fact that excess water enters the cell through the gradual permeabilization of the membrane during lysis. Cells can be trapped in the device for periods up to several days, and their electrical response can be monitored by real-time impedance measurements in a label-free and non-invasive manner. Furthermore, due to the highly efficient single cell trapping capacity of the device, a number of cells can be trapped and held in separate wells for concurrent parallel experiments, allowing for the possibility of stepped parametric experiments and studying cell heterogeneity by combining measurements across the array.

Tài liệu tham khảo

K. Asami, Y. Takahashi, S. Takashima, Dielectric-properties of mouse lymphocytes and erythrocytes. Biochim. Biophys. Acta 1010, 49–55 (1989). doi:10.1016/0167-4889(89)90183-3 L. Bell, A. Seshia, D. Lando, E. Laue, M. Palayret, S. F. Lee, D. Klenerman, A microfluidic device for the hydrodynamic immobilisation of living fission yeast cells for super-resolution imaging. Sensors Actuators B Chem. 192, 36–41 (2014). doi:10.1016/j.snb.2013.10.002 X. X. Chen, S. Shojaei-Zadeh, M. L. Gilchristc, C. Maldarelli, A lipobead microarray assembled by particle entrapment in a microfluidic obstacle course and used for the display of cell membrane receptors. Lab Chip 13, 3041–3060 (2013). doi:10.1039/C3lc50083g N.-C. Chen, C.-H. Chen, M.-K. Chen, L.-S. Jang, M.-H. Wang, Single-cell trapping and impedance measurement utilizing dielectrophoresis in a parallel-plate microfluidic device. Sensors Actuators B Chem. 190, 570–577 (2014). doi:10.1016/j.snb.2013.08.104 D. Di Carlo, Microfluidic Technologies for Single-Cell Analysis: creating uniform cellular microenvironments for fast timescale measurements (VDM Verlag, U.K., 2009) D. Di Carlo, L. P. Lee, Dynamic single-cell analysis for quantitative biology. Anal. Chem. 78, 7918–7925 (2006) D. Di Carlo, N. Aghdam, L. P. Lee, Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Anal. Chem. 78, 4925–4930 (2006a). doi:10.1021/ac060541s D. Di Carlo, L. Y. Wu, L. P. Lee, Dynamic single cell culture array. Lab Chip 6, 1445–1449 (2006b). doi:10.1039/B605937f I. Ermolina, Y. Polevaya, Y. Feldman, Analysis of dielectric spectra of eukaryotic cells by computer modeling. Eur Biophys J Biophy 29,141--145 (2000). doi:10.1007/s002490050259 J. P. Frimat et al., A microfluidic array with cellular valving for single cell co-culture. Lab Chip 11, 231–237 (2011). doi:10.1039/C0lc00172d S. Gawad, L. Schild, P. Renaud, Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing. Lab Chip 1, 76–82 (2001). doi:10.1039/b103933b S. Gawad, K. Cheung, U. Seger, A. Bertsch, P. Renaud, Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations. Lab Chip 4, 241–251 (2004). doi:10.1039/b313761a D. Holmes et al., Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry. Lab Chip 9, 2881–2889 (2009). doi:10.1039/b910053a S. Huang, Non-genetic heterogeneity of cells in development: more than just noise. Development 136, 3853–3862 (2009). doi:10.1242/dev.035139 A. Irimajiri, Y. Doida, T. Hanai, A. Inouye, Passive electrical properties of cultured murine lymphoblast (L5178Y) with reference to its cytoplasmic membrane, nuclear envelope, and intracellular phases. J Membr Biol 38, 209–232 (1978) A. Irimajiri, T. Hanai, A. Inouye, Dielectric theory of multi-stratified Shell-model with its application to a lymphoma cell. J. Theor. Biol. 78, 251–269 (1979). doi:10.1016/0022-5193(79)90268-6 D. Jin et al., A microfluidic device enabling high-efficiency single cell trapping. Biomicrofluidics 9 (2015). doi:10.1063/1.4905428 S. Kobel, A. Valero, J. Latt, P. Renaud, M. Lutolf, Optimization of microfluidic single cell trapping for long-term on-chip culture. Lab Chip 10, 857–863 (2010). doi:10.1039/B918055a I. Kumano, K. Hosoda, H. Suzuki, K. Hirata, T. Yomo, Hydrodynamic trapping of Tetrahymena Thermophila for the long-term monitoring of cell behaviors. Lab Chip 12, 3451–3457 (2012). doi:10.1039/C2lc40367f S. W. Lee, S. S. Lee, Shrinkage ratio of PDMS and its alignment method for the wafer level process. Microsyst. Technol. 14, 205–208 (2008). doi:10.1007/s00542-007-0417-y D. Malleo, J. T. Nevill, L. P. Lee, H. Morgan, Continuous differential impedance spectroscopy of single cells. Microfluid. Nanofluid. 9, 191–198 (2010). doi:10.1007/s10404-009-0534-2 M. A. Mansor, M. R. Ahmad, Single cell electrical characterization techniques. Int J Mol Sci 16, 12686--12712 (2015) doi:10.3390/ijms160612686 C. Moraes, Y. Sun, C. A. Simmons, Solving the shrinkage-induced PDMS alignment registration issue in multilayer soft lithography. J. Micromech. Microeng., 19 (2009). doi:10.1088/0960-1317/19/6/065015 H. Morgan, T. Sun, D. Holmes, S. Gawad, N. G. Green, Single cell dielectric spectroscopy. J. Phys. D. Appl. Phys. 40, 61–70 (2007). doi:10.1088/0022-3727/40/1/S10 M. Muratore, V. Srsen, M. Waterfall, A. Downes, R. Pethig, Biomarker-free dielectrophoretic sorting of differentiating myoblast multipotent progenitor cells and their membrane analysis by Raman spectroscopy. Biomicrofluidics 6 (2012). doi:10.1063/1.4746252 F. B. Myers, C. K. Zarins, O. J. Abilez, L. P. Lee, Label-free electrophysiological cytometry for stem cell-derived cardiomyocyte clusters. Lab Chip 13, 220–228 (2013). doi:10.1039/c2lc40905d J. Nilsson, M. Evander, B. Hammarstrom, T. Laurell, Review of cell and particle trapping in microfluidic systems. Anal. Chim. Acta 649, 141–157 (2009). doi:10.1016/j.aca.2009.07.017 S. Pagliara et al., Auxetic nuclei in embryonic stem cells exiting pluripotency. Nat. Mater. 13, 638–644 (2014). doi:10.1038/Nmat3943 Y. Polevaya, I. Ermolina, M. Schlesinger, M, B. Z. Ginzburg, Y. Feldman, Time domain dielectric spectroscopy study of human cells - II. Normal and malignant white blood cells. Bba-Biomembranes 1419, 257--271 (1999). doi:10.1016/S0005-2736(99)00072-3 N. Reynolds et al., NuRD suppresses pluripotency Gene expression to promote transcriptional heterogeneity and lineage commitment. Cell Stem Cell 10, 583–594 (2012). doi:10.1016/j.stem.2012.02.020 C. E. Sims, N. L. Allbritton, Analysis of single mammalian cells on-chip. Lab Chip 7, 423–440 (2007). doi:10.1039/B615235j A. M. Skelley, O. Kirak, H. Suh, R. Jaenisch, J. Voldman, Microfluidic control of cell pairing and fusion. Nat. Methods 6, 147–152 (2009). doi:10.1038/Nmeth.1290 H. J. Song, Y. Wang, J. M. Rosano, B. Prabhakarpandian, C. Garson, K. Pant, E. Lai, A microfluidic impedance flow cytometer for identification of differentiation state of stem cells. Lab Chip 13, 2300–2310 (2013). doi:10.1039/c3lc41321g T. Sun, H. Morgan, Single-cell microfluidic impedance cytometry: a review. Microfluid. Nanofluid. 8, 423–443 (2010). doi:10.1007/s10404-010-0580-9 T. Sun, N. G. Green, S. Gawad, H. Morgan, Analytical electric field and sensitivity analysis for two microfluidic impedance cytometer designs. Iet Nanobiotechnol 1, 69–79 (2007). doi:10.1049/Iet-Nbt T. Sun, C. Bernabini, H. Morgan, Single-colloidal particle impedance spectroscopy: complete equivalent circuit analysis of polyelectrolyte. Microcapsules. Langmuir 26, 3821–3828 (2010). doi:10.1021/La903609u H. A. Svahn, A. Berg, Single cells or large populations. Lab Chip 7, 544–546 (2007) W. H. Tan, S. Takeuchi, A trap-and-release integrated microfluidic system for dynamic microarray applications. Proc. Natl. Acad. Sci. U. S. A. 104, 1146–1151 (2007). doi:10.1073/pnas.0606625104 W. H. Tan, S. Takeuchi, Dynamic microarray system with gentle retrieval mechanism for cell-encapsulating hydrogel beads. Lab Chip 8, 259–266 (2008). doi:10.1039/B714573j R. Wu, A. V. Terry, D. M. Gilbert, in Nuclear reprogramming: methods and protocols, Methods in Molecular Biology, ed by S. Pells. Observing S-phase dynamics of histone modifications with fluorescently labeled antibodies, vol 325 (Humana Press, Totowa, NJ, 2006), pp. 139–148. doi:10.1385/1597450057 Y. Zhou, S. Basu, E. Laue, A. A. Seshia, Single cell studies of mouse embryonic stem cell (mESC) differentiation by electrical impedance measurements in a microfluidic device. Biosens. Bioelectron. 81, 249–258 (2016). doi:10.1016/j.bios.2016.02.069 Z. Zhu, O. Frey, F. Franke, N. Haandbaek, A. Hierlemann, Real-time monitoring of immobilized single yeast cells through multifrequency electrical impedance spectroscopy. Anal. Bioanal. Chem. 406, 7015–7025 (2014). doi:10.1007/s00216-014-7955-9