Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Những biến đổi biểu hiện gen động trong phản ứng với vi chất dinh dưỡng, đại chất dinh dưỡng và nhiều tác động stress ở đậu tương
Tóm tắt
Việc bảo tồn năng suất cây trồng là vô cùng quan trọng đối với sản xuất đậu tương ở Mỹ và nền kinh tế toàn cầu. Các loài cây đã được chọn giống để tăng năng suất trong suốt hàng nghìn năm, với từng dòng được chọn để cải thiện hiệu suất trong các môi trường đặc thù, những hạn chế mà các loài mô hình như Arabidopsis không gặp phải. Quá trình lựa chọn này có thể đã dẫn đến các thích ứng với stress mới lạ, đặc trưng cho các loài cây trồng. Trong bối cảnh thiếu sắt là một vấn đề thường xuyên ở các vùng trồng đậu tương tại Hoa Kỳ và sự thiếu hụt phosphate đang là một hạn chế đối với sản xuất nông nghiệp toàn cầu, các nghiên cứu về stress dinh dưỡng ở các loài cây trồng là vô cùng quan trọng. Trong nghiên cứu này, chúng tôi đã so sánh trực tiếp phản ứng biểu hiện toàn bộ gen của lá và rễ đối với sự thiếu sắt (Fe) và phosphate (Pi), đại diện cho một vi chất dinh dưỡng và một đại chất dinh dưỡng, tương ứng. Thực hiện các thí nghiệm song song, chúng tôi quan sát thấy đậu tương phản ứng với cả hai sự thiếu hụt dinh dưỡng trong vòng 24 giờ. Mặc dù đậu tương chủ yếu phản ứng với sự thiếu hụt –Fe, nhưng nó lại phản ứng rất mạnh với việc cung cấp lại Pi. Mặc dù thời gian phản ứng khác nhau, nhưng cả hai tín hiệu stress dinh dưỡng đều sử dụng những con đường phân tử giống nhau. Nghiên cứu của chúng tôi là nghiên cứu đầu tiên chứng minh tốc độ và sự đa dạng của phản ứng stress ở đậu tương đối với nhiều sự thiếu hụt dinh dưỡng. Chúng tôi cũng đã thiết kế nghiên cứu để xem xét sự thay đổi về biểu hiện gen trong phản ứng với nhiều sự kiện stress. Chúng tôi đã xác định được 865 và 3375 gen có sự thay đổi trong hướng biểu hiện sau lần tiếp xúc stress thứ hai hoặc chỉ có sự biểu hiện khác biệt sau sự kiện stress thứ hai. Việc hiểu biết về các cơ chế phân tử của những phản ứng này ở các loài cây trồng có thể có những tác động lớn đối với việc cải thiện khả năng chịu đựng stress và bảo tồn năng suất.
Từ khóa
#đậu tương #biểu hiện gen #dinh dưỡng #stress dinh dưỡng #thiếu hụt sắt #thiếu hụt phosphate #phản ứng stressTài liệu tham khảo
Anders S, Huber W (2012) Differential expression of RNA-Seq data at the gene level–the DESeq package. European Molecular Biology Laboratory (EMBL), Heidelberg
Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics. Online [Mar 2016]
Aparicio-Fabre R, Gullien G, Loredo M, Arellano J, Valdes-Lopez O, Ramirez M, Iniguez LP, Panzeri D, Castiglioni B, Cremonesi P (2013) Common bean (Phaseolus vulgaris L.) PvTIFY orchestrates global changes in transcript profile response to jasmonate and phosphorus deficiency. BMC Plant Biol 13:26
Atwood SE, O’Rourke JA, Peiffer GA, Yin T, Majumder M, Zhang C, Cianzio SR, Hill JH, Cook D, Whitham SA, Shoemaker RC, Graham MA (2014) Replication protein A subunit 3 and the iron efficiency response in soybean. Plant Cell Environ 37:213–234
Bauer P, Ling H-Q, Guerinot ML (2007) FIT, the FER-like iron deficiency induced transcription factor in Arabidopsis. Plant Physiol Biochem 45:260–261
Bernard R, Nelson R, Cremeens C (1991) USDA soybean genetic collection: isoline collection. Soybean Genetics Newsletter 18:27–57
Bissoli G, Ninoles R, Fresquet S, Palombieri S, Bueso E, Rubio L, Garcia-Sanchez MJ, Fernandez JA, Mulet JM, Serrano R (2012) Peptidyl-prolyl cis-trans isomerase ROF2 modulates intracellular pH homeostasis in Arabidopsis. Plant J 70:704–716
Bonferroni C (1935) III Calcolo delle assicurazioni su gruppi di teste. Studi in Onore del Professore Salvatore Ortu Carboni, pp 13–60
Bournier M, Tissot N, Mari S, Boucherez J, Lacombe E, Briat J-F, Gaymard F (2013) Arabidopsis ferritin 1 (AtFer1) gene regulation by the phosphate starvation response 1 (AtPHR1) transcription factor reveals a direct molecular link between iron and phosphate homeostasis. J Biol Chem 288:22670–22680
Carpenter CR (2008) Phosphorus control is critical to mitigating eutrophication. PNAS 105:11039–11040
Causier B, Ashworth M, Guo W, Davies B (2012) The TOPLESS interactome: a framework for gene repression in Arabidopsis. Plant Physiol 158:423–438
Chaney RL, Coulombe BA, Bell PF, Angle JS (1992) Detailed method to screen dicot cultivars for resistance to Fe-chlorosis using FeDTPA and bicarbonate in nutrient solutions. J Plant Nutr 15:2063–2083
Charlson DV, Bailey TB, Cianzio SR, Shoemaker RC (2005) Molecular marker Satt481 is associated with iron deficiency chlorosis resistance in a soybean breeding population. Crop Sci 46:2394–2399
Choe J-E, Kim B, Yoon EK, Jang S, Kim G, Dhar S, Lee SA, Lim J (2017) Characterization of the GRAS transcription factor SCARECROW-LIKE 28’s role in Arabidopsis root growth. Plant Biol 60:462–471
Chung HS, Howe GA (2009) A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-domain protein JAZ10 in Arabidopsis. Plant Cell 21:131–145
Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 19:292–305
Crisp PA, Ganguly D, Eichten SR, Borevitz JO, Pogson BJ (2016) Reconsidering plant memory: intersections between stress recovery, RNA turnover, and epigenetics. Sci Adv 2:e1501340
Diers BW, Cianzio SR, Shoemaker RC (1992) Possible identification of quantitative trait loci affecting iron efficiency in soybean. J Plant Nutr 15:2127–2136
Ding Y, Liu N, Virlouvet L, Riethoven J-J, Fromm M, Avramova Z (2013) Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biol 13:229
Fan C, Wang X, Hu R, Wang Y, Xiao C, Jiang Y, Zhang X, Zheng C, Fu Y (2013) The pattern of Phosphate transporter 1 genes evolutionary divergence in Glycine max L. BMC Plant Biol 13:48
Fisher R (1966) The design of experiments. London Oliver and Boyd, Edinburgh
Fode B, Siemsen T, Thurow C, Weigel R, Gatz C (2008) The Arabidopsis GRAS protein SCL14 interacts with class II TGA transcription factors and is essential for the activation of stress inducible promoters. Plant Cell 20:3122–3135
Geske T, Vom Dorp K, Dörman P, Hölzl G (2013) Accumulation of glycolipids and other non-phosphorus lipids in Agrobacterium tumefaciens grown under phosphate deprivation. Glycobiology 23:69–80
Gladman NP, Marshall RS, Lee K-H, Vierstra RD (2016) The proteasome stress regulon is controlled by a pair of NAC transcription factors in Arabidopsis. Plant Cell 28:1279–1296
Goossens J, Fernández-Calvo P, Schweizer F, Goossens A (2016) Jasmonate: signal transduction components and their roles in environmental stress responses. Plant Mol Biol 91:673–689
Gust AA, Felix G (2014) Receptor like proteins associate with SOBIR1-type of adaptors to form biomolecular receptor kinases. Curr Opin Plant Biol 21:104–111
Gy I, Gasciolli V, Lauressergues D, Morel JB, Gombert J, Proux F, Proux C, Vaucheret H, Mallory AC (2007) Arabidopsis FIERY1, XRN2, and XRN3 are endogenous RNA silencing suppressors. Plant Cell 19:3451–3461
Hansen NC, Jolley VD, Naeve SL, Goos RJ (2004) Iron deficiency of soybean in the north central U.S. and associated soil properties. Soil Sci Plant Nutr 50:983–987
Härtel H, Dörmann P, Benning C (2000) DGD1-independent biosynthesis of extraplastidic galactolipids after phosphate deprivation in Arabidopsis. PNAS 97:10649–10654
Heckmann S, Lermontova I, Berckmans B, De Veylder L, Baumlein H, Schubert I (2011) The E2F transcription factor family regulates CENH3 expression in Arabidopsis thaliana. Plant J 68:646–656
Henriques R, Jásik J, Klein M, Martinoia E, Feller U, Schell J, Pais MS, Koncz C (2002) Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects. Plant Mol Biol 50:587–597
Hirsch J, Marin E, Floriani M, Chiarenza S, Richaud P, Nussaume L, Thibaud M (2006) Phosphate deficiency promotes modification of iron distribution in Arabidopsis plants. Biochimie 88:1767–1771
Jacoby RP, Taylor NL, Millar AH (2011) The role of mitochondrial respiration in salinity tolerance. Trends Plant Sci 16:614–623
Khan GA, Vogiatzaki E, Glauser G, Poirier Y (2016) Phosphate deficiency induces the jasmonate pathway and enhances resistance to insect herbivory. Plant Physiol 171:632–644
Lammens T, Li J, Leone G, De Veylder L (2009) Atypical E2Fs: new players in the E2F transcription factor family. Trends Cell Biol 19:111–118
Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25
Lee S-B, Lee SJ, Kim SY (2014) The Arabidopsis AP2/ERF family transcription factor AtERF15 is nuclear localized and positively regulates ABA and stress responses. Plant Cell Rep 34:71–81
Li W, Lan P (2015) Genome-wide analysis of overlapping genes regulated by iron deficiency and phosphate starvation reveals new interactions in Arabidopsis roots. BMC Res Notes 8:555
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079
Li X, Wang Y, Wu B, Kong Y, Li W, Chang W, Zhang C (2014) GmPHR1, a novel homolog of the AtPHR1 transcription factor, plays a role in plant tolerance to phosphate starvation. J Integr Agric 13:2584–2593
Liang Q, Cheng X, Mei M, Yan X, Liao H (2010) QTL analysis of root traits as related to phosphorus efficiency in soybean. Ann Bot 106:223–234
Liao H, Wong FL, Phang TH, Cheung MY, Li WY, Shao G, Yan X, Lam HM (2003) GmPAP3, a novel purple acid phosphatase-like gene in soybean induced by NaCl stress but not by phosphorus deficiency. Gene 30:103–111
Liberatore KL, Dukowic-Schulze S, Miller ME, Chen C, Kianian SF (2016) The role of mitochondria in plant development and stress tolerance. Free Radic Biol Med 100:238–256
Lin S, Cianzio S, Shoemaker R (1997) Mapping genetic loci for iron deficiency chlorosis in soybean. Mol Breed 3:219–229
Lin SF, Grant D, Cianzio S, Shoemaker R (2000) Molecular characterization of iron deficiency chlorosis in soybean. J Plant Nutr 23:1929–1939
Liu T-Y, Aung K, Tseng C-Y, Chang T-Y, Chen Y-S, Chiou T-J (2011) Vacuolar Ca2+/H+ transport activity is required for systemic phosphate homeostasis involving shoot-to-root signaling in Arabidopsis. Plant Physiol 156:1176–1189
Liu N, Ding Y, Fromm M, Avramova Z (2014) Different gene-specific mechanisms determine the ‘revised-response’ memory transcription patterns of a subset of A. thaliana dehydration stress responding genes. Nucleic Acids Res 42:5556–5566
Liu C, Wang B, Li Z, Peng Z, Zhang J (2017) TsNAC1 is a key transcription factor in abiotic stress resistance and growth. Plant Physiol 176:742–756
Long TA, Tsukagoshi H, Busch W, Lahner B, Salt DE, Benfey PN (2010) The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell 22:2219–2236
Ma Z-X, Leng Y-J, Chen G-X, Zhou P-M, Ye D, Chen L-Q (2015) The THERMOSENSITIVE MALE STERILE 1 interacts with the PiPs via DnaJ domain and stimulates their ATPase enzyme activities in Arabidopsis. PLoS One 10:e0132500. https://doi.org/10.1371/journal.pone.0132500
Major IT, Yoshida Y, Campos ML, Kapali G, Xin X-F, Sugimoto K, de Oliveira Ferreira D, He SY, Howe GA (2017) Regulation of growth-defense balance by the JASMONATE ZIM-DOMAIN (JAZ)-MYC transcriptional module. New Phytol 215:1533–1547
Mamidi S, Lee RK, Goos JR, McClean PE (2014) Genome-wide association studies identifies seven major regions responsible for iron deficiency chlorosis in soybean (Glycine max). PLoS One 9:e107469
Marschner H (1995) Mineral nutrition of higher plants. Academic Press Limited, San Diego
Morales AMAP, O’Rourke JA, van de Mortel M, Scheider KT, Bancroft TJ, Borem A, Nelson RT, Nettleton D, Baum TJ, Shoemaker RC, Frederick RD, Abdelnoor RV, Pedley KF, Whitham SA, Graham MA (2013) Transcriptome analyses and virus induced gene silencing identify genes in the Rpp4-mediated Asian soybean rust resistance pathway. Funct Plant Biol 40:1029–1047
Moran Lauter AN, Peiffer GA, Yin T, Whitham SA, Cook D, Shoemaker RC, Graham MA (2014) Identification of candidate genes involved in early iron deficiency chlorosis signaling in soybean (Glycine max) roots and leaves. BMC Genomics 15:1
Nagarajan VK, Smith AP (2012) Ethylene’s role in phosphate starvation signaling: more than just a root growth regulator. Plant Cell Physiol 53:277–286
Ning L, Kan G, Du W, Guo S, Wang Q, Zhang G, Cheng H, Yu D (2016) Association analysis for detecting significant single nucleotide polymorphisms for phosphorus-deficiency tolerance at the seedling stage in soybean [Glycine max (L) Merr.]. Breed Sci 66:191–203
O’Rourke JA, Nelson RT, Grant D, Schmutz J, Grimwood J, Cannon S, Vance CP, Graham MA, Shoemaker RC (2009) Integrating microarray analysis and the soybean genome to understand the soybeans iron deficiency response. BMC Genomics 10:1
O’Rourke J, Yang SS, Miller SS, Bucciarelli B, Liu J, Rydeen A, Bozsoki Z, Uhde-Stone C, Tu ZJ, Allan D, Gronwald JW, Vance CP (2013) An RNA-Seq transcriptome analysis of orthophosphate deficient white lupin reveals novel insights into phosphorus acclimation in plants. Plant Physiol 161:705–724
Peiffer GA, King KE, Severin AJ, May GD, Cianzio SR, Lin SF, Lauter NC, Shoemaker RC (2012) Identification of candidate genes underlying an iron efficiency quantitative trait locus in soybean. Plant Physiol 158:1745–1754
Pogorelko GV, Mokryakova M, Fursova OV, Abdeeva I, Piruzian ES, Bruskin SA (2014) Characterization of three Arabidopsis thaliana immunophilin genes involved in the plant defense response against Pseudomonas syringae. Gene 538:12–22
Qin L, Guo X, Chen L, Liang R, Gu M, Zhao J, Walk T, Liao H (2012) Functional characterization of 14 Pht1 family genes in yeast and their expressions in response to nutrient starvation in soybean. PLoS One 7:e47726
Radziejwoski A, Vlieghe K, Lammens T, Berckmans B, Maes S, Jansen MAK, Knappe C, Albert A, Seidlitz HK, Bahnweg G, Inze D, De Veylder L (2011) Atypical E2F activity coordinates PHR1 photolyase gene transcription with endoreduplication onset. EMBO J 30:355–363
Rai V, Sanagala R, Sinilal B, Yadav S, Sarkar AK, Kumar Dantu P, Jain A (2015) Iron availability affects phosphate deficiency-mediated responses, and evidence of cross-talk with auxin and zinc in Arabidopsis. Plant Cell Physiol 56:1107–1123
Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140
Rogers EE, Guerinot ML (2002) FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis. Plant Cell 14:1787–1799
Saldanha AJ (2004) Java Treeview—extensible visualization of microarray data. Bioinformatics 20:3246–3248
Schindler DW, Hecky RE, Findlay DL, Stainton MP, Parker BR, Paterson MJ, Beaty KG, Lyng M, Kasian SEM (2008) Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37 year whole-ecosystem experiment. PNAS 105:11254–11258
Severin AJ, Peiffer GA, Xu WW, Hyten DL, Bucciarelli B, O’Rourke JA, Bolon Y-T, Grant D, Farmer AD, May GD, Vance CP, Shoemaker RC, Stupar RM (2010) An integrative approach to genomic introgression mapping. Plant Physiol 154:3–12
Shao H, Wang H, Tang X (2015) NAC Transcription factors in plant multiple abiotic stress responses: progress and prospects. Front Plant Sci 6. https://doi.org/10.3389/fpls.2015.00902
Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F (2011) Phosphorus dynamics: from soil to plant. Plant Physiol 156:997–1005
Shewan A, Eastburn DJ, Mostov K (2011) Phosphoinositides in cell architecture. Cold Spring Harb Perspect Biol 3:a004796
Song L, Liu D (2015) Ethylene and plant responses to phosphate deficiency. Front Plant Sci 29:796
Song H, Yin Z, Chao M, Ning L, Zhang D, Yu D (2013) Functional properties and expression quantitative trait loci for phosphate transporter GmPT1 in soybean. Plant Cell Environ 37:462–472
Song C, Je J, Hong JK, Lim CO (2014) Ectopic expression of an Arabidopsis dehydration-responsive element-binding factor DREB2C improves salt stress tolerance in crucifers. Plant Cell Rep 33:1239–1254
Stein RJ, Waters BM (2012) Use of natural variation reveals core genes in the transcriptome of iron-deficient Arabidopsis thaliana roots. J Exp Bot 63:1039–1055
Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C (2017) The STRING database in 2017: quality controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45:D362–D368
Taylor NL, Tan YF, Jacoby RP, Millar AH (2009) Abiotic environmental stress induced changes in the Arabidopsis thaliana chloroplast, mitochondria, and peroxisome proteomes. J Proteome 72:367–378
Team RStudio (2015) RStudio: integrated development for R. RStudio, Inc., Boston http://www.rstudio.com. Accessed 2019 Jun
ten Hove CA, Bochdanovits Z, Jansweijer VMA, Koning FG, Berke L, Sanchez-Perez GF, Scheres B, Heidstra R (2011) Probing the roles of LRR RLK genes in Arabidopsis thaliana roots using a custom T-DNA insertion set. Plant Mol Biol 76:69–83
Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Guerinot ML, Briat J-F, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233
Voos W (2013) Chaperone-protease networks in mitochondrial protein homeostasis. Biochim Biophys Acta, Mol Cell Res 1833:388–399
Wang X, Devaiah SP, Zhang W, Welti R (2006) Signaling functions of phosphatidic acid. Prog Lipid Res 45:250–278
Wang Z, Libault M, Joshi T, Valliyodan B, Nguyen HT, Xu D, Stacey G, Cheng J (2010) SoyDB: a knowledge database of soybean transcription factors. BMC Plant Biol 10:14
Wang Z, Ruan W, Shi J, Zhang L, Xiang D, Yang C, Li C, Wu Z, Liu Y, Yu Y (2014) Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner. PNAS 111:14953–14958
Wang Y, Pang C, Li X, Hu Z, Lv Z, Zheng B, Chen P (2017) The identification of tRNA nucleoside modification genes critical for stress response and development in rice and Arabidopsis. BMC Plant Biol 17:261
Wang L, Chen H, Wang C, Hu Z, Yan S (2018) Negative regulator of E2F transcription factors links cell cycle checkpoint and DNA damage repair. PNAS 115:E3837–E3845
Waters BM, McInturf SA, Stein RJ (2012) Rosette iron deficiency transcript and microRNA profiling reveals links between copper and iron homeostasis in Arabidopsis thaliana. J Exp Bot 63:5903–5918
Welner DH, Deeba F, Leggio LL, Skriver K (2015) NAC transcription factors: from structure to function in stress-associated networks. In: Gonzalez DH (ed) Plant transcription factors: evolutionary, structural and functional aspects. Elsevier, New York, pp 199–212
Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer Nature, Houston
Yan JY, Li CX, Sun L, Ren JY, Li GX, Ding ZJ, Zheng SJ (2016) A WRKY transcription factor regulates Fe translocation under Fe deficiency in Arabidopsis. Plant Physiol 171:2017–2027
Yang A, Li Y, Xu Y, Zhang W-H (2013) A receptor-like protein RMC is involved in the regulation of iron acquisition in rice. J Exp Bot 64:5009–5020
Yao Z, Tian J, Liao H (2014) Comparative characterization of GmSPX members reveals that GmSPX3 is involved in phosphate homeostasis in soybean. Ann Bot 114:477–488
Yuan S, Lee R, Chen S, Chen H, Zhang C, Chen L, Hao Q, Shan Z, Yang Z, Qiu D, Zhang X, Zhao X (2016a) RNA-Seq analysis of differential gene expression responding to different rhizobium strains in soybean (Glycine max) roots. Front Plant Sci 7:721
Yuan Y, Fang L, Karungo SK, Zhang L, Gao Y, Li S, Xin H (2016b) Overexpression of VaPAT1, a GRAS transcription factor from Vitis amurensis, confers abiotic stress tolerance in Arabidopsis. Plant Cell Rep 35:655–666
Zhang D, Cheng H, Geng L, Kan G, Cui S, Meng Q, Gai J, Yu D (2009) Detection of quantitative trait loci for phosphorus deficiency tolerance at soybean seedling stage. Euphytica 167:313–322
Zhang Z, Wang J, Zhang R, Huang R (2012) The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. Plant J 71:273–287
Zhang D, Song H, Cheng H, Hao D, Wang H, Kan G, Jin H, Yu D (2014) The acid phosphatase-encoding gene GmACP1 contributes to soybean tolerance to low-phosphorus stress. PLoS Genet 10:e1004061
Zhang D, Li H, Wang J, Zhang H, Hu Z, Chu S, Lv H, Yu D (2016a) High-density genetic mapping identifies new major loci for tolerance to low-phosphorus stress in soybean. Front Plant Sci 7:372
Zhang J, Zhou X, Xu Y, Yao M, Xie F, Gai J, Li Y, Yang S (2016b) Soybean SPX1 is an important component of the response to phosphate deficiency for phosphorus homeostasis. Plant Sci 248:82–91
Zhang D, Zhang H, Chu S, Li H, Chi Y, Triebwasser-Freese D, Lv H, Yu D (2017) Integrating QTL mapping and transcriptomics identifies candidate genes underlying QTLs associated with soybean tolerance to low-phosphorus stress. Plant Mol Biol 93:137–150
Zheng L, Huang F, Narsai R, Wu J, Giraud E, He F, Cheng L, Wang F, Wu P, Whelan J, Shou H (2009) Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings. Plant Physiol 151:262–274
Zheng XY, Zhou M, Yoo H, Pruneda-Paz JL, Spivey NW, Kay SA, Dong X (2015) Spatial and temporal regulation of biosynthesis of the plant immunity signal salicylic acid. PNAS 112:9166–9173
Zhou Z, Wang Z, Lv Q, Shi J, Zhong Y, Wu P, Mao C (2015) SPX proteins regulate Pi homeostasis and signaling in different subcellular level. Plant Signal Behav 10:e1061163
Zhu D, Li R, Liu X, Sun M, Wu J, Zhang N, Zhu Y (2014) The positive regulatory roles of the TIFY10 proteins in plant responses to alkaline stress. PLoS One 9:e111984