Dynamic exercise improves cognitive function in association with increased prefrontal oxygenation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Hogervorst E, Riedel W, Jeukendrup A, Jolles J (1996) Cognitive performance after strenuous physical exercise. Percept Mot Skills 83:479–488
Lo Bue-Estes C, Willer B, Burton H, Leddy JJ, Wilding GE, Horvath PJ (2008) Short-term exercise to exhaustion and its effects on cognitive function in young women. Percept Mot Skills 107:933–945
Yanagisawa H, Dan I, Tsuzuki D, Kato M, Okamoto M, Kyutoku Y, Soya H (2010) Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test. Neuroimage 50:1702–1710
Ferris LT, Williams JS, Shen CL (2007) The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med Sci Sports Exerc 39:728–734
Kupfermann I (1991) Localization of higher cognitive and affective functions: The Association Cortices. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of neural science, 3rd edn. McGraw-Hill, New York, pp 823–829
Koechlin E, Ody C, Kouneiher F (2003) The architecture of cognitive control in the human prefrontal cortex. Science 302:1181–1185
Kovach CK, Daw ND, Rudrauf D, Tranel D, O’Doherty JP, Adolphs R (2012) Anterior prefrontal cortex contributes to action selection through tracking of recent reward trends. J Neurosci 32:8434–8442
Hoshi Y, Tamura M (1993) Dynamic multichannel near-infrared optical imaging of human brain activity. J Appl Physiol 75:1842–1846
Ehlis AC, Herrmann MJ, Wagener A, Fallgatter AJ (2005) Multi-channel near-infrared spectroscopy detects specific inferior-frontal activation during incongruent Stroop trials. Biol Psychol 69:315–331
Schroeter ML, Cutini S, Wahl MM, Scheid R, von Cramon DY (2007) Neurovascular coupling is impaired in cerebral microangiopathy- An event-related Stroop study. Neuroimage 34:26–34
MacDonald AW 3rd, Cohen JD, Stenger VA, Carter CS (2000) Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288:1835–1838
Milham MP, Banich MT, Webb A, Barad V, Cohen NJ, Wszalek T, Kramer AF (2001) The relative involvement of anterior cingulate and prefrontal cortex in attentional control depends on nature of conflict. Brain Res Cogn Brain Res 12:467–473
Zysset S, Schroeter ML, Neumann J, von Cramon DY (2007) Stroop interference, hemodynamic response and aging: an event-related fMRI study. Neurobiol Aging 28:937–946
Madsen K, Erritzoe D, Mortensen EL, Gade A, Madsen J, Baaré W, Knudsen GM, Hasselbalch SG (2011) Cognitive function is related to fronto-striatal serotonin transporter levels-a brain PET study in young healthy subjects. Psychopharmacology 213:573–581
Marshall RS, Festa JR, Cheung YK, Chen R, Pavol MA, Derdeyn CP, Clarke WR, Videen TO, Grubb RL, Adams HP, Powers WJ, Lazar RM (2012) Cerebral hemodynamics and cognitive impairment: baseline data from the RECON trial. Neurology 78:250–255
Milham MP, Banich MT, Barad V (2003) Competition for priority in processing increases prefrontal cortex’s involvement in top-down control: an event-related fMRI study of the stroop task. Brain Res Cogn Brain Res 17:212–222
Ide K, Horn A, Secher NH (1999) Cerebral metabolic response to submaximal exercise. J Appl Physiol 87:1604–1608
González-Alonso J, Dalsgaard MK, Osada T, Volianitis S, Dawson EA, Yoshiga CC, Secher NH (2004) Brain and central haemodynamics and oxygenation during maximal exercise in humans. J Physiol 557:331–342
Shibuya K, Tanaka J, Kuboyama N, Ogaki T (2004) Cerebral oxygenation during intermittent supramaximal exercise. Respir Physiol Neurobiol 140:165–172
Rupp T, Perrey S (2008) Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise. Eur J Appl Physiol 102:153–163
Rossi S, Cappa SF, Babiloni C, Pasqualetti P, Miniussi C, Carducci F, Babiloni F, Rossini PM (2001) Prefrontal cortex in long-term memory: an “interference” approach using magnetic stimulation. Nat Neurosci 4:948–952
Herwig U, Satrapi P, Schönfeldt-Lecuona C (2003) Using international 10–20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr 16:95–99
Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381
Hoshikawa Y, Yamamoto Y (1997) Effects of Stroop color-word conflict test on the autonomic nervous system responses. Am J Physiol 272:H1113–H1121
Ando S, Kokubu M, Yamada Y, Kimura M (2011) Does cerebral oxygenation affect cognitive function during exercise? Eur J Appl Physiol 111:1973–1982
Fox PT, Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 83:1140–1144
Hoshi Y, Kobayashi N, Tamura M (2001) Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model. J Appl Physiol 90:1657–1662
Elwell CE, Cope M, Edwards AD, Wyatt JS, Delpy DT, Reynolds EO (1994) Quantification of adult cerebral hemodynamics by near-infrared spectroscopy. J Appl Physiol 77:2753–2760
Rostrup E, Law I, Pott F, Ide K, Knudsen GM (2002) Cerebral hemodynamics measured with simultaneous PET and near-infrared spectroscopy in humans. Brain Res 954:183–193
Ogoh S, Ainslie PN, Miyamoto T (2009) Onset responses of ventilation and cerebral blood flow to hypercapnia in humans: rest and exercise. J Appl Physiol 106:880–886
Paulson OB, Strandgaard S, Edvinsson L (1990) Cerebral autoregulation. Cerebrovasc Brain Metab Rev 2:161–192
Hyodo K, Dan I, Suwabe K, Kyutoku Y, Yamada Y, Akahori M, Byun K, Kato M, Soya H (2012) Acute moderate exercise enhances compensatory brain activation in older adults. Neurobiol Aging 33:2621–2632
Kamijyo K, Nishihara Y, Higashiura T, Hatta A, Kaneda T, Kim SR, Kuroiwa K, Kim BJ (2006) Influence of exercise intensity on cognitive processing and arousal level in the central nervous system. Adv Exerc Sports Physiol 12:1–7