Ước lượng dịch chuyển động và phân tích modal của các cây cầu dài bằng cách tích hợp nhiều GNSS và số liệu gia tốc
Tóm tắt
Từ khóa
#cầu dài #ước lượng dịch chuyển #phân tích modal #GNSS #gia tốc #tổng hợp dữ liệu có trọng sốTài liệu tham khảo
Shu J, Ding W, Zhang J, Lin F, Duan Y (2022) Continual-learning-based framework for structural damage recognition. Struct Control Heal Monit 29:e3093. https://doi.org/10.1002/stc.3093
Zhao W, Liu Y, Zhang J, Shao Y, Shu J (2022) Automatic pixel-level crack detection and evaluation of concrete structures using deep learning. Struct Control Heal Monit 29:e2981. https://doi.org/10.1002/stc.2981
Shu J, Li J, Zhang J, Zhao W, Duan Y, Zhang Z (2022) An active learning method with difficulty learning mechanism for crack detection. Smart Structures and Systems 39:53–62. https://doi.org/10.12989/sss.2022.29.1.195
Piombo BAD, Fasana A, Marchesiello S, Ruzzene M (2000) Modelling and identification of the dynamic response of a supported bridge. Mech Syst Signal Process 14:75–89. https://doi.org/10.1006/mssp.1999.1266
Jia J, Feng S, Liu W (2015) A triaxial accelerometer monkey algorithm for optimal sensor placement in structural health monitoring. Meas Sci Technol 26:65104. https://doi.org/10.1088/0957-0233/26/6/065104
Gatti M (2019) Structural health monitoring of an operational bridge: a case study. Eng Struct 195:200–209. https://doi.org/10.1016/j.engstruct.2019.05.102
Masri SF, Sheng LH, Caffrey JP et al (2004) Application of a Web-enabled real-time structural health monitoring system for civil infrastructure systems. Smart Mater Struct 13:1269–1283. https://doi.org/10.1088/0964-1726/13/6/001
Moschas F, Stiros S (2011) Measurement of the dynamic displacements and of the modal frequencies of a short-span pedestrian bridge using GPS and an accelerometer. Eng Struct 33:10–17. https://doi.org/10.1016/j.engstruct.2010.09.013
Ince CD, Sahin M (2000) Real-time deformation monitoring with GPS and Kalman Filter. Earth, Planets Sp 52:837–840. https://doi.org/10.1186/BF03352291
Smyth A, Wu M (2007) Multi-rate Kalman filtering for the data fusion of displacement and acceleration response measurements in dynamic system monitoring. Mech Syst Signal Process 21:706–723. https://doi.org/10.1016/j.ymssp.2006.03.005
Kim J, Kim K, Sohn H (2014) Autonomous dynamic displacement estimation from data fusion of acceleration and intermittent displacement measurements. Mech Syst Signal Process 42:194–205. https://doi.org/10.1016/j.ymssp.2013.09.014
Xu Y, Brownjohn JMW, Hester D, Koo KY (2017) Long-span bridges: enhanced data fusion of GPS displacement and deck accelerations. Eng Struct 147:639–651. https://doi.org/10.1016/j.engstruct.2017.06.018
Yi T, Li H, Gu M (2010) Full-scale measurements of dynamic response of suspension bridge subjected to environmental loads using GPS technology. Sci China Technol Sci 53:469–479. https://doi.org/10.1007/s11431-010-0051-2
Górski P (2015) Investigation of dynamic characteristics of tall industrial chimney based on GPS measurements using random decrement method. Eng Struct 83:30–49. https://doi.org/10.1016/j.engstruct.2014.11.006
Shu J, Zhang C, Gao Y, Niu Y (2023) A multi-task learning-based automatic blind identification procedure for operational modal analysis. Mech Syst Signal Process 187:109959. https://doi.org/10.1016/j.ymssp.2022.109959
Niu Y, Ye Y, Zhao W, Duan Y, Shu J (2021) Identifying modal parameters of a multispan bridge based on high-rate GNSS–RTK measurement using the CEEMD–RDT approach. J Bridg Eng 26:04021049. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001754
Niu Y, Ye Y, Zhao W, Shu J (2020) Dynamic monitoring and data analysis of a long-span arch bridge based on high-rate GNSS-RTK measurement combining CFCEEMD method. J Civ Struct Heal. Monit 11:35–48. https://doi.org/10.1007/s13349-020-00436-x
Kalybek M, Bocian M, Pakos W, et al (2021) Performance of camera-based vibration monitoring systems in input-output modal identification using shaker excitation. Remote Sens 13:3471. https://doi.org/10.3390/rs13173471
Mukhopadhyay S, Luş H, Betti R (2014) Modal parameter based structural identification using input-output data: minimal instrumentation and global identifiability issues. Mech Syst Signal Process 45:283–301. https://doi.org/10.1016/j.ymssp.2013.11.005
Pan C, Ye X, Mei L (2021) Improved automatic operational modal analysis method and application to large-scale bridges. J Bridg Eng 26:04021051. https://doi.org/10.1061/(asce)be.1943-5592.0001756
Sun M, Makki Alamdari M, Kalhori H (2017) Automated operational modal analysis of a cable-stayed bridge. J Bridg Eng 22:05017012. https://doi.org/10.1061/(asce)be.1943-5592.0001141
Brownjohn JMW, Magalhaes F, Caetano E, Cunha A (2010) Ambient vibration re-testing and operational modal analysis of the humber bridge. Eng Struct 32:2003–2018. https://doi.org/10.1016/j.engstruct.2010.02.034
Pereira S, Magalhães F, Cunha Á et al (2021) Modal identification of concrete dams under natural excitation. J Civ Struct Heal Monit 11:465–484. https://doi.org/10.1007/s13349-020-00462-9
Jimenez Capilla JA, Au SK, Brownjohn JMW, Hudson E (2021) Ambient vibration testing and operational modal analysis of monopole telecoms structures. J Civ Struct Heal Monit 11:1077–1091. https://doi.org/10.1007/s13349-021-00499-4
Ye X, Huang P, Pan C, Mei L (2021) Innovative stabilization diagram for automated structural modal identification based on ERA and hierarchical cluster analysis. J Civ Struct Heal Monit 11:1355–1373. https://doi.org/10.1007/s13349-021-00514-8
Ma J (2022) BDS/GPS deformation analysis of a long-span cable-stayed bridge based on colored noise filtering. Geod Geodyn. https://doi.org/10.1016/j.geog.2022.08.005
Huang K, Yuen KV, Wang L (2022) Real-time simultaneous input-state-parameter estimation with modulated colored noise excitation. Mech Syst Signal Process 165:108378. https://doi.org/10.1016/j.ymssp.2021.108378
Lu X, He X, Chen H, ZHENG R, (2021) Operational modal parameter identification with colored noise excitation. Chinese J Aeronaut 34:288–300. https://doi.org/10.1016/j.cja.2020.09.006
Choi HD, Ahn CK, Lim MT (2013) Time-domain filtering for estimation of linear systems with colored noises using recent finite measurements. Meas J Int Meas Confed 46:2792–2797. https://doi.org/10.1016/j.measurement.2013.03.029
Chang G (2014) On kalman filter for linear system with colored measurement noise. J Geod 88:1163–1170. https://doi.org/10.1007/s00190-014-0751-7
Bajrić A, Høgsberg J (2018) Estimation of hysteretic damping of structures by stochastic subspace identification. Mech Syst Signal Process 105:36–50. https://doi.org/10.1016/j.ymssp.2017.11.042
Cancelli A, Laflamme S, Alipour A et al (2020) Vibration-based damage localization and quantification in a pretensioned concrete girder using stochastic subspace identification and particle swarm model updating. Struct Heal Monit 19:587–605. https://doi.org/10.1177/1475921718820015
Reynders EPB (2021) Uncertainty quantification in data-driven stochastic subspace identification. Mech Syst Signal Process 151:107338. https://doi.org/10.1016/j.ymssp.2020.107338
Guo J, Hu CJ, Zhu MJ, Ni YQ (2021) Monitoring-based evaluation of dynamic characteristics of a long span suspension bridge under typhoons. J Civ Struct Heal Monit 11:397–410. https://doi.org/10.1007/s13349-020-00458-5
Lei Y, Luo S, Su H (2018) Multi-rate data fusion based kalman filtering with unknown input for online estimation of dynamic displacements. Earth and Space 2018: Engineering for Extreme Environments - Proceedings of the 16th Biennial International Conference on Engineering, Science, Construction, and Operations in Challenging Environments
Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem. https://doi.org/10.1021/ac60214a047