Đặc tính biến dạng động của đất sét đông lạnh dưới sự quay trục ứng suất chính thuần túy

Arabian Journal of Geosciences - Tập 15 - Trang 1-12 - 2022
Binlong Zhang1,2, Dayan Wang1, Lele Lei3
1the State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
2University of Chinese Academy of Sciences, Beijing, China
3Department of Civil and Architectural Engineering, East China University of Technology, Nanchang, China

Tóm tắt

Trong thực tế, sự quay trục ứng suất chính là một hiện tượng phổ biến được gây ra bởi tải trọng động. Việc xác định các đặc tính biến dạng động của đất đông lạnh là vô cùng quan trọng để thiết kế một cấu trúc có xem xét sự quay trục ứng suất chính dưới điều kiện tải trọng đa trục. Trong nghiên cứu này, các thí nghiệm cắt xoay tần suất chu kỳ đã được thực hiện với sự xem xét các quay trục của trục ứng suất chính đối với các giá trị khác nhau của CSR và tần số, bằng cách sử dụng thiết bị xilanh rỗng đông lạnh (FHCA-300) để điều tra các đặc điểm biến dạng động của đất sét đông lạnh. Từ các kết quả thí nghiệm, các đặc điểm phát triển của biến dạng nhựa tích lũy, các vòng chu trình, mô đun đàn hồi động và tỷ số tiêu tán đã được phân tích. Các phát hiện đã chỉ ra rằng việc tăng CSR làm tăng tốc độ phát triển của biến dạng nhựa tích lũy, suy giảm độ cứng và làm tăng năng lượng tiêu tán. Tần số tải thấp hơn dẫn đến biến dạng nhựa tích lũy lớn hơn tại một chu kỳ tải nhất định, sự suy giảm độ cứng tăng lên khi tần số tải giảm và khả năng hấp thụ năng lượng tiêu tán cũng tăng theo. Hơn nữa, mô đun đàn hồi giảm đáng kể vào giai đoạn đầu của tải trọng, sau đó nó từ từ tăng lên. Điều này ngụ ý rằng một cấu trúc đất ổn định đã được hình thành thông qua những thay đổi liên tục trong hướng phân tử, sự định hình lại và tái sắp xếp trong suốt những chu kỳ đầu tiên và rằng tải trọng chu kỳ đã thúc đẩy việc làm dày mẫu vật.

Từ khóa

#biến dạng động #đất sét đông lạnh #quay trục ứng suất chính #thí nghiệm cắt xoay tần suất chu kỳ

Tài liệu tham khảo

Andersland OB, Ladanyi B (1994) An introduction to frozen ground engineering. Chapman and Hall, New York, p 352 ASTM D-2487 (2017) Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). American Society for Testing and Materials, West Conshohocken Cai YQ, Sun Q, Guo L, Hsein Juang C, Wang J (2015) Permanent deformation characteristics of saturated sand under cyclic loading. Can Geotech J 52:795–807. https://doi.org/10.1139/cgj-2014-0341 Chen GX, Wu Q, Zhou ZL, Ma WJ, Chen WY, Khoshnevisan S, Yang J (2019a) Undrained anisotropy and cyclic resistance of saturated silt subjected to various patterns of principal stress rotation. Géotechnique 70:317–331. https://doi.org/10.1680/jgeot.18.p.180 Chen D, Wang DY, Ma W, Lei LL, Li GY (2019b) A strength criterion for frozen clay considering the influence of stress Lode angle. Can Geotech J 56(11):1557–1572. https://doi.org/10.1139/cgj-2018-0054 Cheng GD (2003) Construction of Qinghai-Tibet railway with cooled roadbed. China Railway Science, Beijing, p 24 Esmaeili-Falak M (2017) Effect of system’s geometry on the stability of frozen wall in excavation of saturated granular soils. University of Tabriz, Tabriz Esmaeili-Falak M, Katebi H, Vadiati M, Adamowski J (2019) Predicting triaxial compressive strength and Young’s modulus of frozen sand using artificial intelligence methods. J Cold Reg Eng 33:04019007. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000188 Esmaeili-Falak M, Katebi H, Javadi AA (2020) Effect of freezing on stress-strain characteristics of granular and cohesive soils. J Cold Reg Eng 34(2):05020001. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000205 Firoozi AA, Taha MR, Firoozi AA, Khan TA (2014) Evaluation of physical properties of clays mixed with silica sand (Penilaian Ciri-ciri Fizikal Tanah Liat Dicampur Pasir Silika). Jurnal Kejuruteraan (j Eng) 26:77–82 Firoozi AA, Taha MR, Firoozi AA (2015) The influence of freeze-thaw cycles on unconfined compressive of clay soils treated with lime. Jurnal Teknologi 76(1):107–113. https://doi.org/10.11113/jt.v76.4127 Firoozi AA, Firoozi AA, Baghini MS (2017a) A review of physical and chemical clayey. J Civil Eng Urban 6(4):64–71 Firoozi AA, Guney Olgun C, Firoozi AA, Baghini MS (2017b) Fundamentals of soil stabilization. Int J Geo-Eng 8(26):1–16. https://doi.org/10.1186/s40703-017-0064-9 Gräbe PJ (2002) Resilient and permanent deformation of railway foundations under principal stress rotation. University of Southampton, Southampton Guo L, Wang J, Cai YQ, Liu HL, Gao YF, Sun HL (2013) Undrained deformation behavior of saturated soft clay under long-term cyclic loading. Soil Dyn Earthq Eng 50:28–37. https://doi.org/10.1016/j.soildyn.2013.01.029 Guo L, Chen J, Wang J, Cai Y, Deng P (2016a) Influences of stress magnitude and loading frequency on cyclic behavior of K0-consolidated marine clay involving principal stress rotation. Soil Dyn Earthq Eng 84:94–107. https://doi.org/10.1016/j.soildyn.2016.01.024 Guo Y, Wang DY, Ma W, Mu YH (2016b) Development and application of frozen hollow cylinder apparatus. J Harbin Instit Technol 48(12):114–120. https://doi.org/10.11918/j.issn.0367-6234.2016.12.016 Hight DW, Gens A, Symes MJ (1983) The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils. Géotechnique 33(4):355–383. https://doi.org/10.1680/geot.1983.33.4.355 Inamn A, Ishikawa T, Miura S (2012) Effect of principal stress axis rotation on cyclic plastic deformation characteristics of unsaturated base course material. Soil Found 52(3):465–487. https://doi.org/10.1016/j.sandf.2012.05.006 Lai YM, Wu ZW, Zhu YL, Zhu L (2000) Elastic visco-plastic analysis for earthquake response of tunnels in cold regions. Cold Reg Sci Technol 31:175–188. https://doi.org/10.1016/S0165-232X(00)00011-2 Lai YM, Xu XT, Yu WB, Qi JL (2014) An experimental investigation of the mechanical behavior and a hyperplastic constitutive model of frozen loess. Int J Eng Sci 84:29–53. https://doi.org/10.1016/j.ijengsci.2014.06.011 Lei LL, Wang DY, Wang YT, Chen D, Ma W (2018) The strength characteristics of frozen clay under the different principal stress directions. J Harbin Inst Technol 50(06):103–109. https://doi.org/10.11918/j.issn.0367-6234.201710089 Lekarp F, Isacsson U, Dawson A (2000) State of the art. I: resilient response of unbound aggregates. J Transp Eng 126:66–75 Li QL, Ling XZ, Hu JJ, Zhou ZW (2019) Residual deformation and stiffness changes of frozen soils subjected to high and low amplitude cyclic loading. Can Geotech J 56(2):263–274. https://doi.org/10.1139/cgj-2017-0720 Ling XZ, Li QL, Wang LN, Zhang F, An LS, Xu PJ (2013) Stiffness and damping ratio evolution of frozen clays under long-term low-level repeated cyclic loading: experimental evidence and evolution model. Cold Reg Sci Technol 86:45–54. https://doi.org/10.1016/j.coldregions.2012.11.002 Liu EL, Lai YM, Liao MK (2016) Fatigue and damage properties of frozen silty sand samples subjected to cyclic triaxial loading. Can Geotech J 53(12):1939–1951. https://doi.org/10.1139/cgj-2016-0152 Liu EL, Lai YM, Henry W, Feng JL (2018) An elasto-plastic model for saturated freezing soils based on thermo-poromechanics. Int J Plast 107:246–285. https://doi.org/10.1016/j.ijplas.2018.04.007 Liu FR, Zhou ZW, Zhang SJ, Ma W, Sun ZZ (2019) Experimental investigation of accumulation deformation properties of frozen clay under different cyclic stress-paths. Cold Reg Sci Technol 163:108–118. https://doi.org/10.1016/j.coldregions.2019.04.007 Ma W, Wang DY (2014) Mechanics of frozen soils. Science Press, Beijing (In Chinese) Ren J, Vanapalli SK, Han Z (2017) Soil freezing process and different expressions for the soil-freezing characteristic curve. Sci Cold Arid Reg 9(3):0221–0228. https://doi.org/10.3724/SP.J.12.2017.00221 Shen RF, Wang HJ, Zhou JX (1996) Dynamic strength of sand under cyclic rotation of principal stress directions. J Hydraul Eng 27(1):27–33. https://doi.org/10.13243/j.cnki.slxb.1996.01.005 Shen Y, Wang X, Liu HL, Du WH, Wang BG, Xu HD (2017) Influence of principal stress rotation of unequal tensile and compressive stress amplitudes on characteristics of soft clay. J Mt Sci 14(2):369–381. https://doi.org/10.1007/s11629-016-4000-9 Simonsen E, Janoo VC, Isacsson U (2002) Resilient properties of unbound road materials during seasonal frost conditions. J Cold Reg Eng 16(1):28–50. https://doi.org/10.1061/(ASCE)0887-381X(2002)16:1(28) Tsytovich NA (1985) The mechanics of frozen ground. Science Press, Beijing (Translated by Zhang, C.Q. and Zhu, Y.L.) Wang YK, Gao YF, Guo L, Cai YQ, Li B, Qiu Y, Mahfouz AH (2017a) Cyclic response of natural soft marine clay under principal stress rotation as induced by wave loads. Ocean Eng 129:191–202. https://doi.org/10.1016/j.oceaneng.2016.11.031 Wang YK, Gao YF, Li B, Fang HY, Wang FM, Guo L, Zhang F (2017b) One-way cyclic deformation behavior of natural soft clay under continuous principal stress rotation. Soil Found 57(6):1002–1013. https://doi.org/10.1016/j.sandf.2017.08.027 Wang JH, Ling XZ, Li QL, Zhang F, Yan L (2018) Accumulated permanent strain and critical dynamic stress of frozen silty clay under cyclic loading. Cold Reg Sci Technol 153:130–143. https://doi.org/10.1016/j.coldregions.2018.05.007 Wang S, Zhong ZL, Liu XR, Tu YL (2019a) Influences of principal stress rotation on the deformation of saturated loess under traffic loading. KSCE J Civil Eng 23(5):2036–2048. https://doi.org/10.1007/s12205-019-0474-7 Wang J, Zhou Z, Hu X, Guo L, Cai Y (2019b) Effects of principal stress rotation and cyclic confining pressure on behavior of soft clay with different frequencies. Soil Dyn Earthq Eng 118:75–85. https://doi.org/10.1016/j.soildyn.2018.12.013 Wang YK, Wan YS, Fang HY, Zen CN, Shi MS (2020a) Wu D (2020a) Experimental study on cyclic behavior of soft clay under circle stress paths. Rock Soil Mech 5:1–10. https://doi.org/10.16285/j.rsm.2019.0386 Wang YK, Wan YS, Liu MC, Guo CC, Zeng CN, Wu D (2020b) Undrained multidimensional deformation behavior and degradation of natural soft marine clay from HCA experiments. Soil Found 60(1):103–114. https://doi.org/10.1016/j.sandf.2020.01.002 Xu XT, Li QL, Xu GF (2020) Investigation on the behavior of frozen silty clay subjected to monotonic and cyclic triaxial loading. Acta Geotech 15(5):1289–1302. https://doi.org/10.1007/s11440-019-00826-6 Yi X, Hu D, Yu WB, Liu WB (2017) Study on the temperature boundary of embankment and its calculation model of the Qinghai-Tibet Highway in permafrost area. J Glaciol Geocryol 39(2):336–342 Zhang S, Tang CA, Zhang XD, Zhang ZC, Jin JX (2015) Cumulative plastic strain of frozen Aeolian soil under highway dynamic loading. Cold Reg Sci Technol 120:89–95. https://doi.org/10.1016/j.coldregions.2015.09.004 Zhang D, Li QL, Liu EL, Liu XY, Zhang G, Song BT (2019) Dynamic properties of frozen silty soils with different coarse-grained contents subjected to cyclic triaxial loading. Cold Reg Sci Technol 157:64–85. https://doi.org/10.1016/j.coldregions.2018.09.010 Zhong ZL, Wang S, Liu XR, Wu B, Chen B (2019) Influences of principal stress rotation (PSR) on the cumulative deformation of remoulded loess with different water contents under traffic loading. Eur J Environ Civ Eng 25:2301–2316. https://doi.org/10.1080/19648189.2019.1626289 Zhou J, Gong XN (2001) Strain degradation of saturated clay under cyclic loading. Can Geotech J 38(1):208–212. https://doi.org/10.1139/t00-062 Zhou ZW, Ma W, Li GY, Shen MD (2020) A novel evaluation method for accumulative plastic deformation of granular materials subjected to cyclic loading: taking frozen subgrade soil as an example. Cold Reg Sci Technol 179:0165-232X. https://doi.org/10.1016/j.coldregions.2020.103152