Dynamic control over feedback regulatory mechanisms improves NADPH flux and xylitol biosynthesis in engineered E. coli
Tài liệu tham khảo
Aidelberg, 2014, Hierarchy of non-glucose sugars in Escherichia coli, BMC Syst. Biol., 8, 133, 10.1186/s12918-014-0133-z
Akhtar, 2009, Construction of a synthetic YdbK-dependent pyruvate:H2 pathway in Escherichia coli BL21(DE3), Metab. Eng., 10.1016/j.ymben.2009.01.002
Albuquerque, 2014, Biotechnological production of xylitol from lignocellulosic wastes: a review, Process Biochem., 49, 1779, 10.1016/j.procbio.2014.07.010
Aslan, 2017, Holistic bioengineering: rewiring central metabolism for enhanced bioproduction, Biochem. J., 474, 3935, 10.1042/BCJ20170377
Becker, 2007, Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum--over expression and modification of G6P dehydrogenase, J. Biotechnol., 132, 99, 10.1016/j.jbiotec.2007.05.026
Bianchi, 1995, Interruption of the ferredoxin (flavodoxin) NADP+ oxidoreductase gene of Escherichia coli does not affect anaerobic growth but increases sensitivity to paraquat, J. Bacteriol., 177, 4528, 10.1128/JB.177.15.4528-4531.1995
Blaschkowski, 1982, Routes of flavodoxin and ferredoxin reduction in Escherichia coli: CoA-acylating pyruvate: flavodoxin and NADPH: flavodoxin oxidoreductases participating in the activation of pyruvate formate-lyase, Eur. J. Biochem., 123, 563, 10.1111/j.1432-1033.1982.tb06569.x
Brockman, 2015, Dynamic metabolic engineering: new strategies for developing responsive cell factories, Biotechnol. J., 10, 1360, 10.1002/biot.201400422
Brockman, 2015, Dynamic knockdown of E. coli central metabolism for redirecting fluxes of primary metabolites, Metab. Eng., 28, 104, 10.1016/j.ymben.2014.12.005
Brouns, 2008, Small CRISPR RNAs guide antiviral defense in prokaryotes, Science, 321, 960, 10.1126/science.1159689
Burg, 2016, Large-scale bioprocess competitiveness: the potential of dynamic metabolic control in two-stage fermentations, Current opinion in
Chemler, 2010, Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering, Metab. Eng., 12, 96, 10.1016/j.ymben.2009.07.003
Chou, 2015, Transhydrogenase promotes the robustness and evolvability of E. coli deficient in NADPH production, PLoS Genet., 11, 10.1371/journal.pgen.1005007
Chubukov, 2014, Environmental dependence of stationary-phase metabolism in Bacillus subtilis and Escherichia coli, Appl. Environ. Microbiol., 80, 2901, 10.1128/AEM.00061-14
Cirino, 2006, Engineering Escherichia coli for xylitol production from glucose-xylose mixtures, Biotechnol. Bioeng., 95, 1167, 10.1002/bit.21082
Davis, 2011, Design, construction and characterization of a set of insulated bacterial promoters, Nucleic Acids Res., 39, 1131, 10.1093/nar/gkq810
de Groot, 2005, Metabolic control analysis of Aspergillus nigerl-arabinose catabolism, Biotechnol. Prog., 21, 1610, 10.1021/bp050189o
Desai, 2010, Regulation of arabinose and xylose metabolism in Escherichia coli, Appl. Environ. Microbiol., 76, 1524, 10.1128/AEM.01970-09
Doong, 2018, Layered dynamic regulation for improving metabolic pathway productivity in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A., 115, 2964, 10.1073/pnas.1716920115
Ebrahim, 2013, COBRApy: COnstraints-based reconstruction and analysis for Python, BMC Syst. Biol., 7, 74, 10.1186/1752-0509-7-74
Edwards, 2001, In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data, Nat. Biotechnol., 19, 125, 10.1038/84379
Eremina, 2010, Overexpression of ydbKencoding putative pyruvate synthase improves L-valine production and aerobic growth on ethanol media by an Escherichia coli strain carrying an oxygen-resistant alcohol dehydrogenase, J. Microb. Biochem. Technol., 2, 77, 10.4172/1948-5948.1000028
Fàbrega, 2012, SoxS-dependent coregulation of ompN and ydbK in a multidrug-resistant Escherichia coli strain, FEMS Microbiol. Lett., 332, 61, 10.1111/j.1574-6968.2012.02577.x
Fristedt, 1994, Evidence for a nicotinamide nucleotide transhydrogenase in Klebsiella pneumoniae, Biochem. Biophys. Res. Commun., 198, 928, 10.1006/bbrc.1994.1132
Gaudu, 2000, Activation of SoxR by overproduction of desulfoferrodoxin: multiple ways to induce the soxRSRegulon, J. Bacteriol., 182, 1761, 10.1128/JB.182.6.1761-1763.2000
Giró, 2006, Glucose-6-phosphate dehydrogenase and ferredoxin-NADP(H) reductase contribute to damage repair during the soxRS response of Escherichia coli, Microbiology, 10.1099/mic.0.28612-0
Goldberg, 2007, Biocatalytic ketone reduction—a powerful tool for the production of chiral alcohols—part II: whole-cell reductions, Appl. Microbiol. Biotechnol.
Gonzalez, 2017, Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by 13C metabolic flux analysis, Metab. Eng., 39, 9, 10.1016/j.ymben.2016.11.003
Grünenfelder, 2001, Proteomic analysis of the bacterial cell cycle, Proc. Natl. Acad. Sci. U.S.A., 98, 4681, 10.1073/pnas.071538098
Guamán, 2018, xylA and xylB overexpression as a successful strategy for improving xylose utilization and poly-3-hydroxybutyrate production in Burkholderia sacchari, J. Ind. Microbiol. Biotechnol., 45, 165, 10.1007/s10295-018-2007-7
Guebel, 2018, Influence of glucose availability and CRP acetylation on the genome-wide transcriptional response of Escherichia coli: assessment by an optimized factorial microarray analysis, Front. Microbiol., 10.3389/fmicb.2018.00941
Hallborn, 1991, Xylitol production by recombinant Saccharomyces cerevisiae, Bio Technol., 10.1038/nbt1191-1090
Hasper, 2000, The Aspergillus Niger transcriptional activator XlnR, which is involved in the degradation of the polysaccharides xylan and cellulose, also regulates d-xylose reductase gene expression, Mol. Microbiol., 36, 193, 10.1046/j.1365-2958.2000.01843.x
Heath, 1995, Regulation of malonyl-CoA metabolism by acyl-acyl carrier protein and β-ketoacyl-acyl carrier protein synthases in Escherichia coli, J. Biol. Chem., 270, 15531, 10.1074/jbc.270.26.15531
Hibi, 2007, Improvement of NADPH-dependent bioconversion by transcriptome-based molecular breeding, Appl. Environ. Microbiol., 73, 7657, 10.1128/AEM.01754-07
Hintsche, 2013, Dilution and the theoretical description of growth-rate dependent gene expression, J. Biol. Eng., 7, 22, 10.1186/1754-1611-7-22
Hodge, 2007, Succinic acid production as an integrated component of a forest products biorefinery
Hoek, 1974, Comparative studies on nicotinamide nucleotide transhydrogenase from different sources, Biochim. Biophys. Acta, 333, 237, 10.1016/0005-2728(74)90008-5
Huber, 2011, Utilizing high-throughput experimentation to enhance specific productivity of an E.coli T7 expression system by phosphate limitation, BMC Biotechnol., 11, 22, 10.1186/1472-6750-11-22
Ishige, 2005, Whole organism biocatalysis, Curr. Opin. Chem. Biol., 9, 174, 10.1016/j.cbpa.2005.02.001
Jair, 1996, Ambidextrous transcriptional activation by SoxS: requirement for the C-terminal domain of the RNA polymerase alpha subunit in a subset of Escherichia coli superoxide-inducible genes, Mol. Microbiol., 19, 307, 10.1046/j.1365-2958.1996.368893.x
Jan, 2013, Metabolic engineering and transhydrogenase effects on NADPH availability in Escherichia coli, Biotechnol. Prog., 29, 1124, 10.1002/btpr.1765
Jawed, 2016, Engineered production of short chain fatty acid in Escherichia coli using fatty acid synthesis pathway, PloS One, 11, 10.1371/journal.pone.0160035
Jin, 2019, Efficient biosynthesis of xylitol from xylose by coexpression of xylose reductase and glucose dehydrogenase in Escherichia coli, Appl. Biochem. Biotechnol., 187, 1143, 10.1007/s12010-018-2878-0
Kim, 2018, Rerouting of NADPH synthetic pathways for increased protopanaxadiol production in Saccharomyces cerevisiae, Sci. Rep., 8, 15820, 10.1038/s41598-018-34210-3
Koo, 2003, A reducing system of the superoxide sensor SoxR in Escherichia coli, EMBO J., 22, 2614, 10.1093/emboj/cdg252
Krapp, 2002, The flavoenzyme ferredoxin (Flavodoxin)-NADP(H) reductase modulates NADP(H) homeostasis during the soxRS response of Escherichia coli, J. Bacteriol., 10.1128/JB.184.5.1474-1480.2002
Lee, 2012, Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae, Appl. Environ. Microbiol., 78, 5708, 10.1128/AEM.01419-12
Lee, 2013, Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation, Appl. Microbiol. Biotechnol., 97, 2761, 10.1007/s00253-013-4750-z
Li, 2013, Positive and negative selection using the tetA-sacB cassette: recombineering and P1 transduction in Escherichia coli, Nucleic Acids Res., 41, 10.1093/nar/gkt1075
Li, 2020
Liao, H., Spindler, E., Warner, J.R., Louie, M., 2014. Micoorganisms and methods for the production of fatty acids and fatty acid derived products. US Patent App. 13.
Liao, H., Mercogliano, C.P., Wolter, T.R., Louie, M.T.M., Ribble, W.K., Lipscomb, T., Spindler, E.C., Lynch, M.D., 2016. Acetyl-coA carboxylases. US Patent. 9447438.
Lindner, 2018, NADPH-auxotrophic E. coli: a sensor strain for testing in vivo regeneration of NADPH, ACS Synth. Biol., 7, 2742, 10.1021/acssynbio.8b00313
Liochev, 1994, NADPH: ferredoxin oxidoreductase acts as a paraquat diaphorase and is a member of the soxRS regulon, Proc. Natl. Acad. Sci. U.S.A., 91, 1328, 10.1073/pnas.91.4.1328
Liu, 2019, Toward green production of chewing gum and diet: complete hydrogenation of xylose to xylitol over ruthenium composite catalysts under mild conditions, Research 2019, 5178573
Luo, 2015, Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression, Nucleic Acids Res., 10.1093/nar/gku971
Luo, 2015, Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression, Nucleic Acids Res., 43, 674, 10.1093/nar/gku971
Lynch, 2016, Into new territory: improved microbial synthesis through engineering of the essential metabolic network, Curr. Opin. Biotechnol., 38, 106, 10.1016/j.copbio.2016.01.009
Lynch, M.D., w. Lipscomb, T.E., Trahan, A.D., Singh, A., Wolter, T., 2012. Microbial Production of Chemical Products and Related Compositions, Methods and Systems. World Patent. 2012129450:A1.
Maury, 2018, Glucose-dependent promoters for dynamic regulation of metabolic pathways, Front Bioeng Biotechnol, 6, 63, 10.3389/fbioe.2018.00063
McGinness, 2006, Engineering controllable protein degradation, Mol. Cell, 22, 701, 10.1016/j.molcel.2006.04.027
Menacho-Melgar, 2020
Menacho-Melgar, 2020, Improved two-stage protein expression and purification via autoinduction of both autolysis and auto DNA/RNA hydrolysis conferred by phage lysozyme and DNA/RNA endonuclease, Biotechnol. Bioeng., 10.1002/bit.27444
Menacho‐Melgar, 2020, Scalable, two‐stage, autoinduction of recombinant protein expression in E. coli utilizing phosphate depletion, Biotechnol. Bioeng., 26, 44
Monk, 2017, iML1515, a knowledgebase that computes Escherichia coli traits, Nat. Biotechnol., 35, 904, 10.1038/nbt.3956
Moreb, 2020, Media Robustness and scalability of phosphate regulated promoters useful for two-stage autoinduction in E. coli, ACS Synth. Biol., 10.1021/acssynbio.0c00182
Nakayama, 2013, Escherichia coli pyruvate:flavodoxin oxidoreductase, YdbK - regulation of expression and biological roles in protection against oxidative stress, Genes Genet. Syst., 10.1266/ggs.88.175
Norsigian, 2020, BiGG Models 2020: multi-strain genome-scale models and expansion across the phylogenetic tree, Nucleic Acids Res., 48, D402
Shuai Li, Zhixia Ye, Juliana Lebeau, Eirik A. Moreb and Michael D. Lynch, n.d. Dynamic control over feedback regulation improves stationary phase fluxes in engineered E. coli. Materials for Review But not publication.
Oeggl, 2018, Citrate as cost-efficient NADPH regenerating agent, Front Bioeng Biotechnol, 6, 196, 10.3389/fbioe.2018.00196
Panke, 2005, Advances in biocatalytic synthesis of pharmaceutical intermediates, Curr. Opin. Chem. Biol., 9, 188, 10.1016/j.cbpa.2005.02.007
Pédelacq, 2006, Engineering and characterization of a superfolder green fluorescent protein, Nat. Biotechnol., 24, 79, 10.1038/nbt1172
Prasad, 2007, Ethanol as an alternative fuel from agricultural, industrial and urban residues, Resour. Conserv. Recycl., 50, 1, 10.1016/j.resconrec.2006.05.007
Qureshi, 2006, Genetically engineered Escherichia coli for ethanol production from xylose, Food Bioprod. Process., 10.1205/fbp.05038
Rydström, 1972, Site-specific inhibitors of mitochondrial nicotinamide-nucleotide transhydrogenase, Eur. J. Biochem., 31, 496, 10.1111/j.1432-1033.1972.tb02557.x
Saito, 2012, Production of lactic acid from xylose and wheat straw by Rhizopus oryzae, J. Biosci. Bioeng., 114, 166, 10.1016/j.jbiosc.2012.03.007
Satowa, 2020, Metabolic engineering of E. coli for improving mevalonate production to promote NADPH regeneration and enhance acetyl‐CoA supply, Biotechnol. Bioeng., 117, 2153, 10.1002/bit.27350
Sauer, 2004, The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli, J. Biol. Chem., 279, 6613, 10.1074/jbc.M311657200
Sharan, 2009, Recombineering: a homologous recombination-based method of genetic engineering, Nat. Protoc., 4, 206, 10.1038/nprot.2008.227
Spaans, 2015, NADPH-generating systems in bacteria and archaea, Front. Microbiol., 6, 742, 10.3389/fmicb.2015.00742
Su, 2015, Efficient production of xylitol from hemicellulosic hydrolysate using engineered Escherichia coli, Metab. Eng., 31, 112, 10.1016/j.ymben.2015.07.003
Suzuki, 1999, Expression of xyrA gene encoding for D-Xylose reductase of Candida tropicalis and production of xylitol in Escherichia coli, J. Biosci. Bioeng., 87, 280, 10.1016/S1389-1723(99)80032-2
Venayak, 2018, MoVE identifies metabolic valves to switch between phenotypic states, Nat. Commun., 9, 5332, 10.1038/s41467-018-07719-4
Walton, 2008, Understanding and improving NADPH-dependent reactions by nongrowing Escherichia coli cells, Biotechnol. Prog., 10.1021/bp030044m
Wiebe, 2015, A novel aldose-aldose oxidoreductase for co-production of D-xylonate and xylitol from D-xylose with Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 99, 9439, 10.1007/s00253-015-6878-5
Winkler, 2015, The LASER database: formalizing design rules for metabolic engineering, Metabolic Engineering Communications, 2, 30, 10.1016/j.meteno.2015.06.003
Wu, 2020, Design of a programmable biosensor-CRISPRi genetic circuits for dynamic and autonomous dual-control of metabolic flux in Bacillus subtilis, Nucleic Acids Res., 48, 996, 10.1093/nar/gkz1123
Xu, 2019, Biosynthetic strategies to produce xylitol: an economical venture, Appl. Microbiol. Biotechnol., 103, 5143, 10.1007/s00253-019-09881-1
Ye, Z., Lynch,M.D., Trahan, A.D., Rodriguez, D.L., Cooper, C.B. Bozdag, A., 2015. Compositions and methods for rapid and dynamic flux control using synthetic metabolic valves. Patent. GB2528177.
Ye, 2020
Ye, 2020, Escherichia coli cas1/2 endonuclease complex modifies self-targeting CRISPR/cascade spacers reducing silencing guide stability, ACS Synth. Biol.