Dynamic control over feedback regulatory mechanisms improves NADPH flux and xylitol biosynthesis in engineered E. coli

Metabolic Engineering - Tập 64 - Trang 26-40 - 2021
Shuai Li1, Zhixia Ye2, Eirik A. Moreb2, Jennifer N. Hennigan1, Daniel Baez Castellanos2, Tian Yang2, Michael D. Lynch2
1Department of Chemistry, Duke University, USA
2Department of Biomedical Engineering, Duke University, USA

Tài liệu tham khảo

Aidelberg, 2014, Hierarchy of non-glucose sugars in Escherichia coli, BMC Syst. Biol., 8, 133, 10.1186/s12918-014-0133-z Akhtar, 2009, Construction of a synthetic YdbK-dependent pyruvate:H2 pathway in Escherichia coli BL21(DE3), Metab. Eng., 10.1016/j.ymben.2009.01.002 Albuquerque, 2014, Biotechnological production of xylitol from lignocellulosic wastes: a review, Process Biochem., 49, 1779, 10.1016/j.procbio.2014.07.010 Aslan, 2017, Holistic bioengineering: rewiring central metabolism for enhanced bioproduction, Biochem. J., 474, 3935, 10.1042/BCJ20170377 Becker, 2007, Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum--over expression and modification of G6P dehydrogenase, J. Biotechnol., 132, 99, 10.1016/j.jbiotec.2007.05.026 Bianchi, 1995, Interruption of the ferredoxin (flavodoxin) NADP+ oxidoreductase gene of Escherichia coli does not affect anaerobic growth but increases sensitivity to paraquat, J. Bacteriol., 177, 4528, 10.1128/JB.177.15.4528-4531.1995 Blaschkowski, 1982, Routes of flavodoxin and ferredoxin reduction in Escherichia coli: CoA-acylating pyruvate: flavodoxin and NADPH: flavodoxin oxidoreductases participating in the activation of pyruvate formate-lyase, Eur. J. Biochem., 123, 563, 10.1111/j.1432-1033.1982.tb06569.x Brockman, 2015, Dynamic metabolic engineering: new strategies for developing responsive cell factories, Biotechnol. J., 10, 1360, 10.1002/biot.201400422 Brockman, 2015, Dynamic knockdown of E. coli central metabolism for redirecting fluxes of primary metabolites, Metab. Eng., 28, 104, 10.1016/j.ymben.2014.12.005 Brouns, 2008, Small CRISPR RNAs guide antiviral defense in prokaryotes, Science, 321, 960, 10.1126/science.1159689 Burg, 2016, Large-scale bioprocess competitiveness: the potential of dynamic metabolic control in two-stage fermentations, Current opinion in Chemler, 2010, Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering, Metab. Eng., 12, 96, 10.1016/j.ymben.2009.07.003 Chou, 2015, Transhydrogenase promotes the robustness and evolvability of E. coli deficient in NADPH production, PLoS Genet., 11, 10.1371/journal.pgen.1005007 Chubukov, 2014, Environmental dependence of stationary-phase metabolism in Bacillus subtilis and Escherichia coli, Appl. Environ. Microbiol., 80, 2901, 10.1128/AEM.00061-14 Cirino, 2006, Engineering Escherichia coli for xylitol production from glucose-xylose mixtures, Biotechnol. Bioeng., 95, 1167, 10.1002/bit.21082 Davis, 2011, Design, construction and characterization of a set of insulated bacterial promoters, Nucleic Acids Res., 39, 1131, 10.1093/nar/gkq810 de Groot, 2005, Metabolic control analysis of Aspergillus nigerl-arabinose catabolism, Biotechnol. Prog., 21, 1610, 10.1021/bp050189o Desai, 2010, Regulation of arabinose and xylose metabolism in Escherichia coli, Appl. Environ. Microbiol., 76, 1524, 10.1128/AEM.01970-09 Doong, 2018, Layered dynamic regulation for improving metabolic pathway productivity in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A., 115, 2964, 10.1073/pnas.1716920115 Ebrahim, 2013, COBRApy: COnstraints-based reconstruction and analysis for Python, BMC Syst. Biol., 7, 74, 10.1186/1752-0509-7-74 Edwards, 2001, In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data, Nat. Biotechnol., 19, 125, 10.1038/84379 Eremina, 2010, Overexpression of ydbKencoding putative pyruvate synthase improves L-valine production and aerobic growth on ethanol media by an Escherichia coli strain carrying an oxygen-resistant alcohol dehydrogenase, J. Microb. Biochem. Technol., 2, 77, 10.4172/1948-5948.1000028 Fàbrega, 2012, SoxS-dependent coregulation of ompN and ydbK in a multidrug-resistant Escherichia coli strain, FEMS Microbiol. Lett., 332, 61, 10.1111/j.1574-6968.2012.02577.x Fristedt, 1994, Evidence for a nicotinamide nucleotide transhydrogenase in Klebsiella pneumoniae, Biochem. Biophys. Res. Commun., 198, 928, 10.1006/bbrc.1994.1132 Gaudu, 2000, Activation of SoxR by overproduction of desulfoferrodoxin: multiple ways to induce the soxRSRegulon, J. Bacteriol., 182, 1761, 10.1128/JB.182.6.1761-1763.2000 Giró, 2006, Glucose-6-phosphate dehydrogenase and ferredoxin-NADP(H) reductase contribute to damage repair during the soxRS response of Escherichia coli, Microbiology, 10.1099/mic.0.28612-0 Goldberg, 2007, Biocatalytic ketone reduction—a powerful tool for the production of chiral alcohols—part II: whole-cell reductions, Appl. Microbiol. Biotechnol. Gonzalez, 2017, Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by 13C metabolic flux analysis, Metab. Eng., 39, 9, 10.1016/j.ymben.2016.11.003 Grünenfelder, 2001, Proteomic analysis of the bacterial cell cycle, Proc. Natl. Acad. Sci. U.S.A., 98, 4681, 10.1073/pnas.071538098 Guamán, 2018, xylA and xylB overexpression as a successful strategy for improving xylose utilization and poly-3-hydroxybutyrate production in Burkholderia sacchari, J. Ind. Microbiol. Biotechnol., 45, 165, 10.1007/s10295-018-2007-7 Guebel, 2018, Influence of glucose availability and CRP acetylation on the genome-wide transcriptional response of Escherichia coli: assessment by an optimized factorial microarray analysis, Front. Microbiol., 10.3389/fmicb.2018.00941 Hallborn, 1991, Xylitol production by recombinant Saccharomyces cerevisiae, Bio Technol., 10.1038/nbt1191-1090 Hasper, 2000, The Aspergillus Niger transcriptional activator XlnR, which is involved in the degradation of the polysaccharides xylan and cellulose, also regulates d-xylose reductase gene expression, Mol. Microbiol., 36, 193, 10.1046/j.1365-2958.2000.01843.x Heath, 1995, Regulation of malonyl-CoA metabolism by acyl-acyl carrier protein and β-ketoacyl-acyl carrier protein synthases in Escherichia coli, J. Biol. Chem., 270, 15531, 10.1074/jbc.270.26.15531 Hibi, 2007, Improvement of NADPH-dependent bioconversion by transcriptome-based molecular breeding, Appl. Environ. Microbiol., 73, 7657, 10.1128/AEM.01754-07 Hintsche, 2013, Dilution and the theoretical description of growth-rate dependent gene expression, J. Biol. Eng., 7, 22, 10.1186/1754-1611-7-22 Hodge, 2007, Succinic acid production as an integrated component of a forest products biorefinery Hoek, 1974, Comparative studies on nicotinamide nucleotide transhydrogenase from different sources, Biochim. Biophys. Acta, 333, 237, 10.1016/0005-2728(74)90008-5 Huber, 2011, Utilizing high-throughput experimentation to enhance specific productivity of an E.coli T7 expression system by phosphate limitation, BMC Biotechnol., 11, 22, 10.1186/1472-6750-11-22 Ishige, 2005, Whole organism biocatalysis, Curr. Opin. Chem. Biol., 9, 174, 10.1016/j.cbpa.2005.02.001 Jair, 1996, Ambidextrous transcriptional activation by SoxS: requirement for the C-terminal domain of the RNA polymerase alpha subunit in a subset of Escherichia coli superoxide-inducible genes, Mol. Microbiol., 19, 307, 10.1046/j.1365-2958.1996.368893.x Jan, 2013, Metabolic engineering and transhydrogenase effects on NADPH availability in Escherichia coli, Biotechnol. Prog., 29, 1124, 10.1002/btpr.1765 Jawed, 2016, Engineered production of short chain fatty acid in Escherichia coli using fatty acid synthesis pathway, PloS One, 11, 10.1371/journal.pone.0160035 Jin, 2019, Efficient biosynthesis of xylitol from xylose by coexpression of xylose reductase and glucose dehydrogenase in Escherichia coli, Appl. Biochem. Biotechnol., 187, 1143, 10.1007/s12010-018-2878-0 Kim, 2018, Rerouting of NADPH synthetic pathways for increased protopanaxadiol production in Saccharomyces cerevisiae, Sci. Rep., 8, 15820, 10.1038/s41598-018-34210-3 Koo, 2003, A reducing system of the superoxide sensor SoxR in Escherichia coli, EMBO J., 22, 2614, 10.1093/emboj/cdg252 Krapp, 2002, The flavoenzyme ferredoxin (Flavodoxin)-NADP(H) reductase modulates NADP(H) homeostasis during the soxRS response of Escherichia coli, J. Bacteriol., 10.1128/JB.184.5.1474-1480.2002 Lee, 2012, Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae, Appl. Environ. Microbiol., 78, 5708, 10.1128/AEM.01419-12 Lee, 2013, Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation, Appl. Microbiol. Biotechnol., 97, 2761, 10.1007/s00253-013-4750-z Li, 2013, Positive and negative selection using the tetA-sacB cassette: recombineering and P1 transduction in Escherichia coli, Nucleic Acids Res., 41, 10.1093/nar/gkt1075 Li, 2020 Liao, H., Spindler, E., Warner, J.R., Louie, M., 2014. Micoorganisms and methods for the production of fatty acids and fatty acid derived products. US Patent App. 13. Liao, H., Mercogliano, C.P., Wolter, T.R., Louie, M.T.M., Ribble, W.K., Lipscomb, T., Spindler, E.C., Lynch, M.D., 2016. Acetyl-coA carboxylases. US Patent. 9447438. Lindner, 2018, NADPH-auxotrophic E. coli: a sensor strain for testing in vivo regeneration of NADPH, ACS Synth. Biol., 7, 2742, 10.1021/acssynbio.8b00313 Liochev, 1994, NADPH: ferredoxin oxidoreductase acts as a paraquat diaphorase and is a member of the soxRS regulon, Proc. Natl. Acad. Sci. U.S.A., 91, 1328, 10.1073/pnas.91.4.1328 Liu, 2019, Toward green production of chewing gum and diet: complete hydrogenation of xylose to xylitol over ruthenium composite catalysts under mild conditions, Research 2019, 5178573 Luo, 2015, Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression, Nucleic Acids Res., 10.1093/nar/gku971 Luo, 2015, Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression, Nucleic Acids Res., 43, 674, 10.1093/nar/gku971 Lynch, 2016, Into new territory: improved microbial synthesis through engineering of the essential metabolic network, Curr. Opin. Biotechnol., 38, 106, 10.1016/j.copbio.2016.01.009 Lynch, M.D., w. Lipscomb, T.E., Trahan, A.D., Singh, A., Wolter, T., 2012. Microbial Production of Chemical Products and Related Compositions, Methods and Systems. World Patent. 2012129450:A1. Maury, 2018, Glucose-dependent promoters for dynamic regulation of metabolic pathways, Front Bioeng Biotechnol, 6, 63, 10.3389/fbioe.2018.00063 McGinness, 2006, Engineering controllable protein degradation, Mol. Cell, 22, 701, 10.1016/j.molcel.2006.04.027 Menacho-Melgar, 2020 Menacho-Melgar, 2020, Improved two-stage protein expression and purification via autoinduction of both autolysis and auto DNA/RNA hydrolysis conferred by phage lysozyme and DNA/RNA endonuclease, Biotechnol. Bioeng., 10.1002/bit.27444 Menacho‐Melgar, 2020, Scalable, two‐stage, autoinduction of recombinant protein expression in E. coli utilizing phosphate depletion, Biotechnol. Bioeng., 26, 44 Monk, 2017, iML1515, a knowledgebase that computes Escherichia coli traits, Nat. Biotechnol., 35, 904, 10.1038/nbt.3956 Moreb, 2020, Media Robustness and scalability of phosphate regulated promoters useful for two-stage autoinduction in E. coli, ACS Synth. Biol., 10.1021/acssynbio.0c00182 Nakayama, 2013, Escherichia coli pyruvate:flavodoxin oxidoreductase, YdbK - regulation of expression and biological roles in protection against oxidative stress, Genes Genet. Syst., 10.1266/ggs.88.175 Norsigian, 2020, BiGG Models 2020: multi-strain genome-scale models and expansion across the phylogenetic tree, Nucleic Acids Res., 48, D402 Shuai Li, Zhixia Ye, Juliana Lebeau, Eirik A. Moreb and Michael D. Lynch, n.d. Dynamic control over feedback regulation improves stationary phase fluxes in engineered E. coli. Materials for Review But not publication. Oeggl, 2018, Citrate as cost-efficient NADPH regenerating agent, Front Bioeng Biotechnol, 6, 196, 10.3389/fbioe.2018.00196 Panke, 2005, Advances in biocatalytic synthesis of pharmaceutical intermediates, Curr. Opin. Chem. Biol., 9, 188, 10.1016/j.cbpa.2005.02.007 Pédelacq, 2006, Engineering and characterization of a superfolder green fluorescent protein, Nat. Biotechnol., 24, 79, 10.1038/nbt1172 Prasad, 2007, Ethanol as an alternative fuel from agricultural, industrial and urban residues, Resour. Conserv. Recycl., 50, 1, 10.1016/j.resconrec.2006.05.007 Qureshi, 2006, Genetically engineered Escherichia coli for ethanol production from xylose, Food Bioprod. Process., 10.1205/fbp.05038 Rydström, 1972, Site-specific inhibitors of mitochondrial nicotinamide-nucleotide transhydrogenase, Eur. J. Biochem., 31, 496, 10.1111/j.1432-1033.1972.tb02557.x Saito, 2012, Production of lactic acid from xylose and wheat straw by Rhizopus oryzae, J. Biosci. Bioeng., 114, 166, 10.1016/j.jbiosc.2012.03.007 Satowa, 2020, Metabolic engineering of E. coli for improving mevalonate production to promote NADPH regeneration and enhance acetyl‐CoA supply, Biotechnol. Bioeng., 117, 2153, 10.1002/bit.27350 Sauer, 2004, The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli, J. Biol. Chem., 279, 6613, 10.1074/jbc.M311657200 Sharan, 2009, Recombineering: a homologous recombination-based method of genetic engineering, Nat. Protoc., 4, 206, 10.1038/nprot.2008.227 Spaans, 2015, NADPH-generating systems in bacteria and archaea, Front. Microbiol., 6, 742, 10.3389/fmicb.2015.00742 Su, 2015, Efficient production of xylitol from hemicellulosic hydrolysate using engineered Escherichia coli, Metab. Eng., 31, 112, 10.1016/j.ymben.2015.07.003 Suzuki, 1999, Expression of xyrA gene encoding for D-Xylose reductase of Candida tropicalis and production of xylitol in Escherichia coli, J. Biosci. Bioeng., 87, 280, 10.1016/S1389-1723(99)80032-2 Venayak, 2018, MoVE identifies metabolic valves to switch between phenotypic states, Nat. Commun., 9, 5332, 10.1038/s41467-018-07719-4 Walton, 2008, Understanding and improving NADPH-dependent reactions by nongrowing Escherichia coli cells, Biotechnol. Prog., 10.1021/bp030044m Wiebe, 2015, A novel aldose-aldose oxidoreductase for co-production of D-xylonate and xylitol from D-xylose with Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 99, 9439, 10.1007/s00253-015-6878-5 Winkler, 2015, The LASER database: formalizing design rules for metabolic engineering, Metabolic Engineering Communications, 2, 30, 10.1016/j.meteno.2015.06.003 Wu, 2020, Design of a programmable biosensor-CRISPRi genetic circuits for dynamic and autonomous dual-control of metabolic flux in Bacillus subtilis, Nucleic Acids Res., 48, 996, 10.1093/nar/gkz1123 Xu, 2019, Biosynthetic strategies to produce xylitol: an economical venture, Appl. Microbiol. Biotechnol., 103, 5143, 10.1007/s00253-019-09881-1 Ye, Z., Lynch,M.D., Trahan, A.D., Rodriguez, D.L., Cooper, C.B. Bozdag, A., 2015. Compositions and methods for rapid and dynamic flux control using synthetic metabolic valves. Patent. GB2528177. Ye, 2020 Ye, 2020, Escherichia coli cas1/2 endonuclease complex modifies self-targeting CRISPR/cascade spacers reducing silencing guide stability, ACS Synth. Biol.