Dynamic control of chromatin-associated m6A methylation regulates nascent RNA synthesis
Tài liệu tham khảo
Akhtar, 2021, m6A RNA methylation regulates promoter-proximal pausing of RNA polymerase II, Mol. Cell, 81, 10.1016/j.molcel.2021.06.023
Akichika, 2019, Cap-specific terminal N (6)-methylation of RNA by an RNA polymerase II-associated methyltransferase, Science, 363, 10.1126/science.aav0080
Barbieri, 2017, Promoter-bound METTL3 maintains myeloid leukaemia by m(6)A-dependent translation control, Nature, 552, 126, 10.1038/nature24678
Beckedorff, 2020, The human integrator complex facilitates transcriptional elongation by endonucleolytic cleavage of nascent transcripts, Cell Rep., 32, 107917, 10.1016/j.celrep.2020.107917
Chelmicki, 2021, m(6)A RNA methylation regulates the fate of endogenous retroviruses, Nature, 591, 312, 10.1038/s41586-020-03135-1
Chen, 2018, fastp: an ultra-fast all-in-one FASTQ preprocessor, Bioinformatics, 34, i884, 10.1093/bioinformatics/bty560
Core, 2019, Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation, Genes Dev., 33, 960, 10.1101/gad.325142.119
Davis, 2018, The encyclopedia of DNA elements (ENCODE): data portal update, Nucleic Acids Res., 46, D794, 10.1093/nar/gkx1081
Dominissini, 2012, Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq, Nature, 485, 201, 10.1038/nature11112
Elrod, 2019, The integrator complex attenuates promoter-proximal transcription at protein-coding genes, Mol. Cell, 76, 10.1016/j.molcel.2019.10.034
2012, An integrated encyclopedia of DNA elements in the human genome, Nature, 489, 57, 10.1038/nature11247
Ezzeddine, 2011, A subset of Drosophila integrator proteins is essential for efficient U7 snRNA and spliceosomal snRNA 3′-end formation, Mol. Cell. Biol., 31, 328, 10.1128/MCB.00943-10
Gaidatzis, 2015, Analysis of intronic and exonic reads in RNA-seq data characterizes transcriptional and post-transcriptional regulation, Nat. Biotechnol., 33, 722, 10.1038/nbt.3269
Gates, 2017, Histone marks in the ‘driver’s seat’: functional roles in steering the transcription cycle, Trends Biochem. Sci., 42, 977, 10.1016/j.tibs.2017.10.004
Heinz, 2010, Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities, Mol. Cell, 38, 576, 10.1016/j.molcel.2010.05.004
Henriques, 2018, Widespread transcriptional pausing and elongation control at enhancers, Genes Dev., 32, 26, 10.1101/gad.309351.117
Jia, 2011, N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO, Nat. Chem. Biol., 7, 885, 10.1038/nchembio.687
Judd, 2021, Pioneer-like factor GAF cooperates with PBAP (SWI/SNF) and NURF (ISWI) to regulate transcription, Genes Dev., 35, 147, 10.1101/gad.341768.120
Kan, 2021, A neural m6A/Ythdf pathway is required for learning and memory in Drosophila, Nat. Commun., 12, 1458, 10.1038/s41467-021-21537-1
Kaya-Okur, 2019, CUT&Tag for efficient epigenomic profiling of small samples and single cells, Nat. Commun., 10, 1930, 10.1038/s41467-019-09982-5
Ke, 2017, m(6)A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover, Genes Dev., 31, 990, 10.1101/gad.301036.117
Knuckles, 2017, RNA fate determination through cotranscriptional adenosine methylation and microprocessor binding, Nat. Struct. Mol. Biol., 24, 561, 10.1038/nsmb.3419
Langmead, 2009, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biol., 10, R25, 10.1186/gb-2009-10-3-r25
Lasman, 2020, Context-dependent functional compensation between Ythdf m(6)A reader proteins, Genes Dev., 34, 1373, 10.1101/gad.340695.120
Lee, 2021, Enhancer RNA m6A methylation facilitates transcriptional condensate formation and gene activation, Mol. Cell, 81, 10.1016/j.molcel.2021.07.024
Li, 2009, The sequence alignment/map format and SAMtools, Bioinformatics, 25, 2078, 10.1093/bioinformatics/btp352
Liu, 2020, N (6)-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription, Science, 367, 580, 10.1126/science.aay6018
Liu, 2021, The RNA m(6)A reader YTHDC1 silences retrotransposons and guards ES cell identity, Nature, 591, 322, 10.1038/s41586-021-03313-9
Liu, 2017, N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein, Nucleic Acids Res., 45, 6051, 10.1093/nar/gkx141
Lizio, 2015, Gateways to the FANTOM5 promoter level mammalian expression atlas, Genome Biol., 16, 22, 10.1186/s13059-014-0560-6
Louloupi, 2018, Transient N-6-methyladenosine transcriptome sequencing reveals a regulatory role of m6A in splicing efficiency, Cell Rep., 23, 3429, 10.1016/j.celrep.2018.05.077
Lovén, 2013, Selective inhibition of tumor oncogenes by disruption of super-enhancers, Cell, 153, 320, 10.1016/j.cell.2013.03.036
Lykke-Andersen, 2021, Integrator is a genome-wide attenuator of non-productive transcription, Mol. Cell, 81, 10.1016/j.molcel.2020.12.014
Mahat, 2016, Base-pair-resolution genome-wide mapping of active RNA polymerases using precision nuclear run-on (PRO-seq), Nat. Protoc., 11, 1455, 10.1038/nprot.2016.086
Meyer, 2012, Comprehensive analysis of mRNA methylation reveals enrichment in 3 ′ UTRs and near stop codons, Cell, 149, 1635, 10.1016/j.cell.2012.05.003
Ping, 2014, Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase, Cell Res., 24, 177, 10.1038/cr.2014.3
Quinlan, 2010, BEDTools: a flexible suite of utilities for comparing genomic features, Bioinformatics, 26, 841, 10.1093/bioinformatics/btq033
Ramírez, 2016, deepTools2: a next generation web server for deep-sequencing data analysis, Nucleic Acids Re.s, 44, W160, 10.1093/nar/gkw257
Sendinc, 2019, PCIF1 catalyzes m6Am mRNA methylation to regulate gene expression, Mol. Cell, 75, 10.1016/j.molcel.2019.05.030
Shi, 2019, Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers, Mol. Cell, 74, 640, 10.1016/j.molcel.2019.04.025
Śledź, 2016, Structural insights into the molecular mechanism of the m(6)A writer complex, eLife, 5, 10.7554/eLife.18434
Trapnell, 2009, TopHat: discovering splice junctions with RNA-Seq, Bioinformatics, 25, 1105, 10.1093/bioinformatics/btp120
Wang, 2016, Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases, Mol. Cell, 63, 306, 10.1016/j.molcel.2016.05.041
Wang, 2016, Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex, Nature, 534, 575, 10.1038/nature18298
Wang, 2014, N6-methyladenosine-dependent regulation of messenger RNA stability, Nature, 505, 117, 10.1038/nature12730
Wang, 2021, Role of Hakai in m6A modification pathway in Drosophila, Nat. Commun., 12, 2159, 10.1038/s41467-021-22424-5
Xiang, 2017, RNA m(6)A methylation regulates the ultraviolet-induced DNA damage response, Nature, 543, 573, 10.1038/nature21671
Xiao, 2019, The RNA N(6)-methyladenosine modification landscape of human fetal tissues, Nat. Cell Biol., 21, 651, 10.1038/s41556-019-0315-4
Xu, 2021, METTL3 regulates heterochromatin in mouse embryonic stem cells, Nature, 591, 317, 10.1038/s41586-021-03210-1
Yu, 2015, ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization, Bioinformatics, 31, 2382, 10.1093/bioinformatics/btv145
Zaccara, 2020, A unified model for the function of YTHDF proteins in regulating m(6)A-modified mRNA, Cell, 181, 10.1016/j.cell.2020.05.012
Zhang, 2008, Model-based analysis of ChIP-Seq (MACS), Genome Biol., 9, R137, 10.1186/gb-2008-9-9-r137
Zhang, 2021, INTS11 regulates hematopoiesis by promoting PRC2 function, Sci. Adv., 7, eabh1684, 10.1126/sciadv.abh1684
Zheng, 2013, ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility, Mol. Cell, 49, 18, 10.1016/j.molcel.2012.10.015
Zhou, 2019, Regulation of co-transcriptional pre-mRNA splicing by m(6)A through the low-complexity protein hnRNPG, Mol. Cell, 76, 10.1016/j.molcel.2019.07.005