Dynamic bi-directional phosphorylation events associated with the reciprocal regulation of synapses during homeostatic up- and down-scaling

Cell Reports - Tập 36 - Trang 109583 - 2021
Kristina Desch1, Julian D. Langer1, Erin M. Schuman1
1Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany

Tài liệu tham khảo

Aakalu, 2001, Dynamic visualization of local protein synthesis in hippocampal neurons, Neuron, 30, 489, 10.1016/S0896-6273(01)00295-1 Amir, 1999, Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2, Nat. Genet., 23, 185, 10.1038/13810 Bai, 2020, Deep Multilayer Brain Proteomics Identifies Molecular Networks in Alzheimer’s Disease Progression, Neuron, 105, 975, 10.1016/j.neuron.2019.12.015 Bambah-Mukku, 2014, A positive autoregulatory BDNF feedback loop via C/EBPβ mediates hippocampal memory consolidation, J. Neurosci., 34, 12547, 10.1523/JNEUROSCI.0324-14.2014 Bates, 2015, Fitting linear mixed-effects models using lme4, J. Stat. Softw., 67 Bats, 2007, The interaction between Stargazin and PSD-95 regulates AMPA receptor surface trafficking, Neuron, 53, 719, 10.1016/j.neuron.2007.01.030 Benjamini, 1995, Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing, J. R. Stat. Soc. B, 57, 289 Blackman, 2012, A critical and cell-autonomous role for MeCP2 in synaptic scaling up, J. Neurosci., 32, 13529, 10.1523/JNEUROSCI.3077-12.2012 Blum, 1999, A mitogen-activated protein kinase cascade in the CA1/CA2 subfield of the dorsal hippocampus is essential for long-term spatial memory, J. Neurosci., 19, 3535, 10.1523/JNEUROSCI.19-09-03535.1999 Brüning, 2019, Sleep-wake cycles drive daily dynamics of synaptic phosphorylation, Science, 366, eaav3617, 10.1126/science.aav3617 Castillo, 2002, RIM1α is required for presynaptic long-term potentiation, Nature, 415, 327, 10.1038/415327a Chen, 2003, Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2, Science, 302, 885, 10.1126/science.1086446 Cox, 2008, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat. Biotechnol., 26, 1367, 10.1038/nbt.1511 Cox, 2014, Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ, Mol. Cell. Proteomics, 13, 2513, 10.1074/mcp.M113.031591 Czernik, 1987, Amino acid sequences surrounding the cAMP-dependent and calcium/calmodulin-dependent phosphorylation sites in rat and bovine synapsin I, Proc. Natl. Acad. Sci. USA, 84, 7518, 10.1073/pnas.84.21.7518 Davis, 2006, Homeostatic control of neural activity: from phenomenology to molecular design, Annu. Rev. Neurosci., 29, 307, 10.1146/annurev.neuro.28.061604.135751 Diering, 2017, Homer1a drives homeostatic scaling-down of excitatory synapses during sleep, Science, 355, 511, 10.1126/science.aai8355 Dörrbaum, 2020, Proteome dynamics during homeostatic scaling in cultured neurons, eLife, 9, e52939, 10.7554/eLife.52939 Dosemeci, 2010, Regulation of phosphorylation at the postsynaptic density during different activity states of Ca2+/calmodulin-dependent protein kinase II, Biochem. Biophys. Res. Commun., 391, 78, 10.1016/j.bbrc.2009.10.167 Ehlers, 2003, Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system, Nat. Neurosci., 6, 231, 10.1038/nn1013 Engholm-Keller, 2019, The temporal profile of activity-dependent presynaptic phospho-signalling reveals long-lasting patterns of poststimulus regulation, PLoS Biol., 17, e3000170, 10.1371/journal.pbio.3000170 Fahs, 2016, Approaches to Study Phosphatases, ACS Chem. Biol., 11, 2944, 10.1021/acschembio.6b00570 Farley, 1991, Protein kinase C inhibitors prevent induction and continued expression of cell memory in Hermissenda type B photoreceptors, Proc. Natl. Acad. Sci. USA, 88, 2016, 10.1073/pnas.88.5.2016 Ferrero, 2007, Ca2+/calmodulin kinase II increases ryanodine binding and Ca2+-induced sarcoplasmic reticulum Ca2+ release kinetics during β-adrenergic stimulation, J. Mol. Cell. Cardiol., 43, 281, 10.1016/j.yjmcc.2007.05.022 Franceschini, 2013, STRING v9.1: protein-protein interaction networks, with increased coverage and integration, Nucleic Acids Res., 41, D808, 10.1093/nar/gks1094 Fukunaga, 1993, Long-term potentiation is associated with an increased activity of Ca2+/calmodulin-dependent protein kinase II, J. Biol. Chem., 268, 7863, 10.1016/S0021-9258(18)53037-4 Glock, 2020, The mRNA translation landscape in the synaptic neuropil, bioRxiv Greengard, 1993, Synaptic vesicle phosphoproteins and regulation of synaptic function, Science, 259, 780, 10.1126/science.8430330 Hornbeck, 2015, PhosphoSitePlus, 2014: mutations, PTMs and recalibrations, Nucleic Acids Res., 43, D512, 10.1093/nar/gku1267 Huke, 2008, Ryanodine receptor phosphorylation at Serine 2030, 2808 and 2814 in rat cardiomyocytes, Biochem. Biophys. Res. Commun., 376, 80, 10.1016/j.bbrc.2008.08.084 Humphrey, 2015, Protein Phosphorylation: A Major Switch Mechanism for Metabolic Regulation, Trends Endocrinol. Metab., 26, 676, 10.1016/j.tem.2015.09.013 Ibata, 2008, Rapid synaptic scaling induced by changes in postsynaptic firing, Neuron, 57, 819, 10.1016/j.neuron.2008.02.031 Jang, 2015, Regulation of STEP61 and tyrosine-phosphorylation of NMDA and AMPA receptors during homeostatic synaptic plasticity, Mol. Brain, 8, 55, 10.1186/s13041-015-0148-4 Kalashnikova, 2010, SynDIG1: an activity-regulated, AMPA- receptor-interacting transmembrane protein that regulates excitatory synapse development, Neuron, 65, 80, 10.1016/j.neuron.2009.12.021 Kim, 2004, PDZ domain proteins of synapses, Nat. Rev. Neurosci., 5, 771, 10.1038/nrn1517 Ko, 2006, SALM synaptic cell adhesion-like molecules regulate the differentiation of excitatory synapses, Neuron, 50, 233, 10.1016/j.neuron.2006.04.005 Kohansal-Nodehi, 2016, Analysis of protein phosphorylation in nerve terminal reveals extensive changes in active zone proteins upon exocytosis, eLife, 5, 1, 10.7554/eLife.14530 Kolde, 2019 Lee, 2006, Synaptic plasticity and phosphorylation, Pharmacol. Ther., 112, 810, 10.1016/j.pharmthera.2006.06.003 Li, 2016, Long-term potentiation modulates synaptic phosphorylation networks and reshapes the structure of the postsynaptic interactome, Sci. Signal., 9, rs8, 10.1126/scisignal.aaf6716 Lisman, 1988, Feasibility of long-term storage of graded information by the Ca2+/calmodulin-dependent protein kinase molecules of the postsynaptic density, Proc. Natl. Acad. Sci. USA, 85, 5320, 10.1073/pnas.85.14.5320 Lisman, 2015, Biochemical principles underlying the stable maintenance of LTP by the CaMKII/NMDAR complex, Brain Res., 1621, 51, 10.1016/j.brainres.2014.12.010 Malinow, 1988, Persistent protein kinase activity underlying long-term potentiation, Nature, 335, 820, 10.1038/335820a0 Marder, 2003, Current compensation in neuronal homeostasis, Neuron, 37, 2, 10.1016/S0896-6273(02)01173-X Martin, 1997, MAP kinase translocates into the nucleus of the presynaptic cell and is required for long-term facilitation in Aplysia, Neuron, 18, 899, 10.1016/S0896-6273(00)80330-X Miller, 1986, Regulation of brain type II Ca2+/calmodulin-dependent protein kinase by autophosphorylation: a Ca2+-triggered molecular switch, Cell, 44, 861, 10.1016/0092-8674(86)90008-5 Nestler, 1983, Protein phosphorylation in the brain, Nature, 305, 583, 10.1038/305583a0 O’Brien, 1998, Activity-dependent modulation of synaptic AMPA receptor accumulation, Neuron, 21, 1067, 10.1016/S0896-6273(00)80624-8 Pedersen, 2017, Site-Specific Phosphorylation of PSD-95 PDZ Domains Reveals Fine-Tuned Regulation of Protein-Protein Interactions, ACS Chem. Biol., 12, 2313, 10.1021/acschembio.7b00361 Sanderson, 2018, Control of Homeostatic Synaptic Plasticity by AKAP-Anchored Kinase and Phosphatase Regulation of Ca2+-Permeable AMPA Receptors, J. Neurosci., 38, 2863, 10.1523/JNEUROSCI.2362-17.2018 Schanzenbächer, 2016, Nascent Proteome Remodeling following Homeostatic Scaling at Hippocampal Synapses, Neuron, 92, 358, 10.1016/j.neuron.2016.09.058 Schanzenbächer, 2018, Time- and polarity-dependent proteomic changes associated with homeostatic scaling at central synapses, eLife, 7, 1, 10.7554/eLife.33322 Seabold, 2008, The SALM family of adhesion-like molecules forms heteromeric and homomeric complexes, J. Biol. Chem., 283, 8395, 10.1074/jbc.M709456200 Selcher, 1999, A necessity for MAP kinase activation in mammalian spatial learning, Learn. Mem., 6, 478, 10.1101/lm.6.5.478 Shannon, 2003, Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res., 13, 2498, 10.1101/gr.1239303 Sharma, 2015, Cell type- and brain region-resolved mouse brain proteome, Nat. Neurosci., 18, 1819, 10.1038/nn.4160 Simsek-Duran, 2004, Adapter protein 14-3-3 is required for a presynaptic form of LTP in the cerebellum, Nat. Neurosci., 7, 1296, 10.1038/nn1348 Smolen, 2008, Bistable MAP kinase activity: a plausible mechanism contributing to maintenance of late long-term potentiation, Am. J. Physiol. Cell Physiol., 294, C503, 10.1152/ajpcell.00447.2007 Thiagarajan, 2005, Adaptation to synaptic inactivity in hippocampal neurons, Neuron, 47, 725, 10.1016/j.neuron.2005.06.037 Thomas, 2004, MAPK cascade signalling and synaptic plasticity, Nat. Rev. Neurosci., 5, 173, 10.1038/nrn1346 Turrigiano, 2008, The self-tuning neuron: synaptic scaling of excitatory synapses, Cell, 135, 422, 10.1016/j.cell.2008.10.008 Turrigiano, 2012, Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function, Cold Spring Harb. Perspect. Biol., 4, a005736, 10.1101/cshperspect.a005736 Turrigiano, 1998, Activity-dependent scaling of quantal amplitude in neocortical neurons, Nature, 391, 892, 10.1038/36103 Tyanova, 2016, The Perseus computational platform for comprehensive analysis of (prote)omics data, Nat. Methods, 13, 731, 10.1038/nmeth.3901 Ubersax, 2007, Mechanisms of specificity in protein phosphorylation, Nat. Rev. Mol. Cell Biol., 8, 530, 10.1038/nrm2203 Vallejo, 2017, Posttranslational Modifications Regulate the Postsynaptic Localization of PSD-95, Mol. Neurobiol., 54, 1759, 10.1007/s12035-016-9745-1 van Gelder, 2020, Temporal quantitative proteomics of mGluR-induced protein translation and phosphorylation in neurons, Mol. Cell. Proteomics, 19, 1952, 10.1074/mcp.RA120.002199 Vizcaíno, 2013, The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013, Nucleic Acids Res., 41, D1063, 10.1093/nar/gks1262 Wang, 2006, A novel family of adhesion-like molecules that interacts with the NMDA receptor, J. Neurosci., 26, 2174, 10.1523/JNEUROSCI.3799-05.2006 Wiredja, 2017, The KSEA App: a web-based tool for kinase activity inference from quantitative phosphoproteomics, Bioinformatics, 33, 3489, 10.1093/bioinformatics/btx415 Yong, 2020, Tyrosine phosphorylation of the AMPA receptor subunit GluA2 gates homeostatic synaptic plasticity, Proc. Natl. Acad. Sci. USA, 117, 4948, 10.1073/pnas.1918436117 Zhou, 2006, Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation, Neuron, 52, 255, 10.1016/j.neuron.2006.09.037 Zhu, 2002, Ras and Rap control AMPA receptor trafficking during synaptic plasticity, Cell, 110, 443, 10.1016/S0092-8674(02)00897-8