Dynamic assessment of exposure to air pollution using mobile phone data

Springer Science and Business Media LLC - Tập 15 - Trang 1-14 - 2016
Bart Dewulf1,2,3, Tijs Neutens1, Wouter Lefebvre3, Gerdy Seynaeve4, Charlotte Vanpoucke5, Carolien Beckx3, Nico Van de Weghe1
1Department of Geography, Ghent University, Ghent, Belgium
2Research Foundation Flanders, Brussels, Belgium
3VITO, Mol, Belgium
4Proximus, Brussels, Belgium
5IRCEL, Brussels, Belgium

Tóm tắt

Exposure to air pollution can have major health impacts, such as respiratory and cardiovascular diseases. Traditionally, only the air pollution concentration at the home location is taken into account in health impact assessments and epidemiological studies. Neglecting individual travel patterns can lead to a bias in air pollution exposure assessments. In this work, we present a novel approach to calculate the daily exposure to air pollution using mobile phone data of approximately 5 million mobile phone users living in Belgium. At present, this data is collected and stored by telecom operators mainly for management of the mobile network. Yet it represents a major source of information in the study of human mobility. We calculate the exposure to NO2 using two approaches: assuming people stay at home the entire day (traditional static approach), and incorporating individual travel patterns using their location inferred from their use of the mobile phone network (dynamic approach). The mean exposure to NO2 increases with 1.27 μg/m3 (4.3 %) during the week and with 0.12 μg/m3 (0.4 %) during the weekend when incorporating individual travel patterns. During the week, mostly people living in municipalities surrounding larger cities experience the highest increase in NO2 exposure when incorporating their travel patterns, probably because most of them work in these larger cities with higher NO2 concentrations. It is relevant for health impact assessments and epidemiological studies to incorporate individual travel patterns in estimating air pollution exposure. Mobile phone data is a promising data source to determine individual travel patterns, because of the advantages (e.g. low costs, large sample size, passive data collection) compared to travel surveys, GPS, and smartphone data (i.e. data captured by applications on smartphones).

Tài liệu tham khảo

Beelen R, Stafoggia M, Raaschou-Nielsen O, Andersen ZJ, Xun WW, Katsouyanni K, Dimakopoulou K, Brunekreef B, Weinmayr G, Hoffmann B, Wolf K, Samoli E, Houthuijs D, Nieuwenhuijsen M, Oudin A, Forsberg B, Olsson D, Salomaa V, Lanki T, Yli-Tuomi T, Oftedal B, Aamodt G, Nafstad P, De Faire U, Pedersen NL, Östenson C-G, Fratiglioni L, Penell J, Korek M, Pyko A, et al. Long-term exposure to air pollution and cardiovascular mortality: an analysis of 22 European cohorts. Epidemiology. 2014;25:368–78. Brook RD, Rajagopalan S, Pope CA, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC, Whitsel L, Kaufman JD. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation. 2010;121:2331–78. Brugge D, Durant JL, Rioux C. Near-highway pollutants in motor vehicle exhaust: a review of epidemiologic evidence of cardiac and pulmonary health risks. Environ Heal. 2007;6:12. Gehring U, Gruzieva O, Agius RM, Beelen R, Custovic A, Cyrys J, Eeftens M, Flexeder C, Fuertes E, Heinrich J, Hoffmann B, De Jongste JC, Kerkhof M. Air pollution exposure and lung function in children: the ESCAPE project. Environ Health Perspect. 2013;121:1357–64. HEI. Traffic-related air pollution: a critical review of the literature on emissions, exposure, and health effects. 2010. http://pubs.healtheffects.org/getfile.php?u=553. Accessed 13 Apr 2015. Peters A, von Klot S, Heier M, Trentinaglia I, Hörmann A, Wichmann HE, Löwel H. Exposure to traffic and the onset of myocardial infarction. N Engl J Med. 2004;351:1721–30. Pope CA III, Dockery DW. Health effects of fine particulate air pollution: lines that connect. Air Waste Manag Assoc. 2006;56:709–42. Riediker M, Cascio WE, Griggs TR, Herbst MC, Bromberg PA, Neas L, Williams RW, Devlin RB. Particulate matter exposure in cars is associated with cardiovascular effects in healthy young men. Am J Respir Crit Care Med. 2004;169:934–40. WHO. Health aspects of air pollution with particulate matter, ozone and nitrogen dioxide. 2003. http://www.euro.who.int/__data/assets/pdf_file/0005/112199/E79097.pdf. Accessed 23 Mar 2015. WHO. Review of evidence on health aspects of air pollution—REVIHAAP Project. 2013. http://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-report-final-version.pdf. Accessed 23 Mar 2015. Brunekreef B, Hoek G, Schouten L, Bausch-goldbohm S, Fischer P, Armstrong B, Hughes E, Jerrett M, Brandt P Van Den. Effects of long-term exposure on respiratory and cardiovascular mortality in the Netherlands: the NLCS-AIR study. 2009. http://www.n65.nl/NCLS-AIR-Study-2009.pdf. Accessed 5 June 2015. Jerrett M, Burnett RT, Beckerman BS, Turner MC, Krewski D, Thurston G, Martin RV, van Donkelaar A, Hughes E, Shi Y, Gapstur SM, Thun MJ, Pope CA. Spatial analysis of air pollution and mortality in California. Am J Respir Crit Care Med. 2013;188:593–9. Tenailleau QM, Mauny F, Joly D, François S, Bernard N. Air pollution in moderately polluted urban areas: how does the definition of “neighborhood” impact exposure assessment? Environ Pollut. 2015;206:437–48. Bell ML, Ebisu K, Belanger K. Ambient air pollution and low birth weight in Connecticut and Massachusetts. Child Heal. 2007;115:1118–24. Cesaroni G, Badaloni C, Porta D, Forastiere F, Perucci CA. Comparison between various indices of exposure to traffic-related air pollution and their impact on respiratory health in adults. Occup Environ Med. 2008;65:683–90. Hoek G, Brunekreef B, Goldbohm S, Fischer P, Van Den Brandt PA. Association between mortality and indicators of traffic-related air pollution in the Netherlands: a cohort study. Lancet. 2002;360:1203–9. Huynh M, Woodruff TJ, Parker JD, Schoendorf KC. Relationships between air pollution and preterm birth in California. Pediatr Perinat Epidemiol. 2006;20:454–61. Beckx C, Int Panis L, Arentze T, Janssens D, Torfs R, Broekx S, Wets G. A dynamic activity-based population modelling approach to evaluate exposure to air pollution: methods and application to a Dutch urban area. Environ Impact Assess Rev. 2009;29:179–85. Dons E, Van Poppel M, Kochan B, Wets G, Int Panis L. Implementation and validation of a modeling framework to assess personal exposure to black carbon. Environ Int. 2014;62:64–71. Setton E. The impact of daily mobility on exposure to traffic-related air pollution and health effect estimates. J Expo Sci Environ Epidemiol. 2011;21:42–8. Dons E, Int Panis L, Van Poppel M, Theunis J, Willems H, Torfs R, Wets G. Impact of time–activity patterns on personal exposure to black carbon. Atmos Environ. 2011;45:3594–602. Steinle S, Reis S, Sabel CE. Quantifying human exposure to air pollution—moving from static monitoring to spatio-temporally resolved personal exposure assessment. Sci Total Environ. 2013;443:184–93. Valero N, Aguilera I, Llop S, Esplugues A, de Nazelle A, Ballester F, Sunyer J. Concentrations and determinants of outdoor, indoor and personal nitrogen dioxide in pregnant women from two Spanish birth cohorts. Environ Int. 2009;35:1196–201. Dhondt S, Beckx C, Degraeuwe B, Lefebvre W, Kochan B, Bellemans T, Int Panis L, Macharis C, Putman K. Integration of population mobility in the evaluation of air quality measures on local and regional scales. Atmos Environ. 2012;59:67–74. Dewulf B, Neutens T, Van Dyck D, De Bourdeaudhuij I, Int Panis L, Beckx C, Van de Weghe N. Dynamic assessment of inhaled air pollution using GPS and accelerometer data. J Transp Heal. 2016. doi:10.1016/j.jth.2015.10.004. Stopher PR, Greaves SP. Household travel surveys: where are we going? Transp Res Part A Policy Pract. 2007;41:367–81. Wilson J. Measuring personal travel and goods movement: a review of the bureau of transportation statistics’ surveys. 2004. http://onlinepubs.trb.org/onlinepubs/sr/sr277.pdf. Accessed 23 Nov 2015. Murakami E: Hard to reach populations (Presentation at the NYMTC survey workshop). 2008. https://www.nymtc.org/project/surveys/WORKSHOP/Murakami.pdf. Accessed 18 June 2015. Fecht D, Beale L, Briggs D. A GIS-based urban simulation model for environmental health analysis. Environ Model Softw. 2014;58:1–11. Houston D, Ong P, Jaimes G, Winer A. Traffic exposure near the Los Angeles-Long Beach port complex: using GPS-enhanced tracking to assess the implications of unreported travel and locations. J Transp Geogr. 2011;19:1399–409. de Nazelle A, Seto E, Donaire-Gonzalez D, Mendez M, Matamala J, Nieuwenhuijsen MJ, Jerrett M. Improving estimates of air pollution exposure through ubiquitous sensing technologies. Environ Pollut. 2013;176:92–9. Su JG, Jerrett M, Meng Y-Y, Pickett M, Ritz B. Integrating smart-phone based momentary location tracking with fixed site air quality monitoring for personal exposure assessment. Sci Total Environ. 2015;506–507:518–26. Calabrese F, Ferrari L, Blondel VD. Urban sensing using mobile phone network data: a survey of research. ACM Comput Surv. 2014;47:1–20. Ahas R, Silm S, Järv O, Saluveer E, Tiru M. Using mobile positioning data to model locations meaningful to users of mobile phones. J Urban Technol. 2010;17:3–27. Jonge E De, Pelt M Van, Roos M. Time patterns, geospatial clustering nd mobility statistics based on mobile phone network data. Stat Netherlands 2012:1–26. http://www.cbs.nl/NR/rdonlyres/4EDB51ED-927A-4A69-B8F3-4DC57A44DDE4/0/Timepatternsgeospatialclusteringandmobilitystatistics.pdf. Accessed 29 Oct 2015. Ratti C, Frenchman D, Pulselli RM, Williams S. Mobile landscapes: using location data from cell phones for urban analysis. Environ Plan B Plan Des. 2006;33:727–48. Deville P, Linard C, Martin S, Gilbert M, Stevens FR, Gaughan AE, Blondel VD, Tatem AJ. Dynamic population mapping using mobile phone data. Proc Natl Acad Sci. 2014;111:15888–93. Ahas R, Aasa A, Roose A, Mark Ü, Silm S. Evaluating passive mobile positioning data for tourism surveys: an Estonian case study. Tour Manag. 2008;29:469–86. Kuusik A, Nilbe K, Mehine T, Ahas R. Country as a free sample: the ability of tourism events to generate repeat visits. Case study with mobile positioning data in estonia. Procedia Soc Behav Sci. 2014;148:262–70. Alexander L, Jiang S, Murga M, Gonz MC. Validation of origin-destination trips by purpose and time of day inferred from mobile phone data. Transp Res Part C. 2015;58:1–20. Widhalm P, Yang Y, Ulm M, Athavale S, Gonz MC. Discovering urban activity patterns in cell phone data. Transportation (Amst). 2015;42:597–623. Calabrese F, Di LG, Liang L, Carlo R. Estimating origin-destination flows using mobile phone location data. Pervasive Comput. 2011;10:36–44. Pappalardo L, Simini F, Rinzivillo S, Pedreschi D, Giannotti F. Returners and explorers dichotomy in human mobility. Nat Commun. 2015;6:8. Chen C, Bian L, Ma J. From traces to trajectories: how well can we guess activity locations from mobile phone traces? Transp Res Part C Emerg Technol. 2014;46:326–37. Proximus. Proximus telecom universe survey. 2015. Smart Business Strategies. Deel 6: telecom and netwerken. ICT jaarboek 2014–2015. 2014;141:186–189. Blomberg A, Krishna MT, Bocchino V, Biscione GL, Shute JK, Kelly FJ, Frew AJ, Holgate ST, Sandström T. The inflammatory effects of 2 ppm NO2 on the airways of healthy subjects. Am J Respir Crit Care Med. 1997;156:418–24. Cesaroni G, Stafoggia M, Galassi C, Hilding A, Hoffmann B, Houthuijs D, Ostenson C, Overvad K, Pedersen NL. Long term exposure to ambient air pollution and incidence of acute coronary events: prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE project. BMJ. 2014;348:16. Lefebvre W, Degrawe B, Beckx C, Vanhulsel M, Kochan B, Bellemans T, Janssens D, Wets G. Presentation and evaluation of an integrated model chain to respond to traffic- and health-related policy questions. Environ Model Softw. 2013;40:160–70. VMM, VITO. Validation of the IFDM-model for use in urban applications. 2013. http://www.atmosys.eu/faces/doc/ATMOSYS_Deliverable_10_IFDM_Model_Validation.pdf. Accessed 15 Sept 2015. IRCEL. http://www.irceline.be. Leroy D, Dufour S, Vandervoort P, Van Den Meersche B, Standaert G, Tilmans R, Georgis M, Lybaert D. 2015 Q3 quarterly report. 2015. http://cdn.proximus.com/proximusprod.artwhere.net/sites/default/files/Documents/Investors/Reports/2015/Q3/Quarterly%20Report%20-%20Q3%202015%20results_final.pdf. Altman DG, Bland JM. The normal distribution. BMJ. 1995;310:298. OECD. OECD economic surveys: Belgium, vol. 2013. Paris: OECD Publishing; 2013. FOD Mobiliteit en Vervoer. Kilometers Afgelegd Door Belgische Voertuigen in Het Jaar 2011. 2013. https://www.google.be/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0ahUKEwiIvoCfmdzLAhXhC5oKHTQiCGYQFggpMAI&url=http%3A%2F%2Fmobilit.belgium.be%2Fsites%2Fdefault%2Ffiles%2Fdownloads%2Fp130603an_studie%2520voertuigkilometersx.doc&usg=AFQjCNET4cwbwSwPCtnoKLDMCUssS-dtpw&sig2=Sg3Wn42nuzQU14eJvht44w. Accessed 2 Oct 2015. Giannotti F, Pedreschi D. Mobility, data mining and privacy. Berlin: Springer; 2008. Wightman P, Coronell W, Jabba D, Jimeno M, Labrador M. Evaluation of location obfuscation techniques for privacy in location based information systems. In 2011 IEEE Latin–American conference on communications, LATINCOM 2011. 2011.