Phân tích động học của dầm di chuyển theo trục chịu áp lực bên trong bằng phương pháp phần tử hữu hạn

Springer Science and Business Media LLC - Tập 31 - Trang 2663-2670 - 2017
Hongliang Hua1, Ming Qiu1, Zhenqiang Liao1
1School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China

Tóm tắt

Mô hình động học của một dầm linh hoạt di chuyển theo trục chịu áp lực bên trong được trình bày. Nguyên tắc kết nối giữa dầm linh hoạt và áp lực bên trong được phân tích trước, và năng lượng tiềm năng của áp lực bên trong do sự uốn của dầm được suy dẫn dựa trên nguyên tắc công việc ảo. Một phần tử dầm rỗng 1 chiều chứa áp lực bên trong được thiết lập. Phương pháp phần tử hữu hạn và phương trình Lagrange được sử dụng để suy diễn các phương trình chuyển động của hệ thống di chuyển theo trục. Các phản ứng động học được phân tích bằng phương pháp tích phân thời gian Newmark-β. Dựa trên các phản ứng động học đã được tính toán, các tác động của áp lực bên trong đến động lực học của dầm được thảo luận. Một số hiện tượng thú vị được quan sát.

Từ khóa

#dầm linh hoạt #áp lực bên trong #phân tích động học #phương pháp phần tử hữu hạn #tích phân thời gian Newmark-β

Tài liệu tham khảo

H. I. Gimm, K. U. Cha and C. K. Cho, Characterizations of gun barrel vibrations of during firing based on shock response analysis and short-time Fourier transform, Journal of Mechanical Science and Technology, 26 (5) (2012) 1463–1470. H. L. Hua, Z. Q. Liao and J. E. Song, Vibration reduction and firing accuracy improvement by natural frequency optimization of a machine gun system, Journal of Mechanical Science and Technology, 29 (9) (2015) 3635–3643. H. R. Oz and H. Boyaci, Transverse vibrations of tensioned pipes conveying fluid with time-dependent velocity, Journal of Sound and Vibration, 236 (2) (2000) 259–276. W. D. Zhu and Y. Chen, Theoretical and experimental investigation of elevator cable dynamics and control, Journal of Vibration and Acoustics-Transactions of the ASME, 128 (1) (2006) 66–78. W. D. Darmawijoyo and W. T. Van Horssen, On boundary damping for a weakly nonlinear wave equation, Nonlinear Dynamics, 30 (2) (2002) 179–191. G. Suweken and W. T. Van Horssen, On the transversal vibrations of a conveyor belt with a low and time-varying velocity. Part I: the string-like case, Journal of Sound and Vibration, 264 (1) (2003) 117–133. G. Suweken and W. T. Van Horssen, On the transversal vibrations of a conveyor belt with a low and time-varying velocity. Part II: the beam-like case, Journal of Sound and Vibration, 267 (5) (2003) 1007–1027. M. Pakdemirli and H. R. Oz, Infinite mode analysis and truncation to resonant modes of axially accelerated beam vibrations, Journal of Sound and Vibration, 311 (3-5) (2008) 1052–1074. S. V. Ponomareva and W. T. van Horssen, On the transversal vibrations of an axially moving continuum with a timevarying velocity: Transient from string to beam behavior, Journal of Sound and Vibration, 325 (4-5) (2009) 959–973. G. Santhosh and D. Kumar, Anomalous transport and phonon renormalization in a chain with transverse and longitudinal vibrations, Physical Review E, 82 (1) (2010). L.-X. Xu et al., Modal analysis on transverse vibration of axially moving roller chain coupled with lumped mass, Journal of Central South University of Technology, 18 (1) (2011) 108–115. V. A. Kuzkin and A. M. Krivtsov, Nonlinear positive/negative thermal expansion and equations of state of a chain with longitudinal and transverse vibrations, Physica Status Solidi B-Basic Solid State Physics, 252 (7) (2015) 1664–1670. C. Li-Qun, Analysis and control of transverse vibrations of axially moving strings, Applied Mechanics Review, 58 (2) (2005) 91–116. J. Zajaczkowski, Interaction of the driving motor and axially moving beam in textile machines, Fibres & Textiles in Eastern Europe, 17 (2) (2009) 96–98. J. A. Wickert and C. D. Mote, Travelling load response of an axially moving string, Journal of Sound and Vibration, 149 (2) (1991) 267–284. W. D. Zhu and C. D. Mote, Free and forced response of an axially moving string transporting a damped linear oscillator, Journal of Sound and Vibration, 177 (5) (1994) 591–610. S. V. Ponomareva and W. T. van Horssen, On transversal vibrations of an axially moving string with a time-varying velocity, Nonlinear Dynamics, 50 (1-2) (2007) 315–323. A. Kesimli, E. Özkaya and S. M. Bagdatli, Nonlinear vibrations of spring-supported axially moving string, Nonlinear Dynamics, 81 (3) (2015) 1523–1534. R. A. Malookani and W. T. van Horssen, On resonances and the applicability of Galerkin is truncation method for an axially moving string with time-varying velocity, Journal of Sound and Vibration, 344 (2015) 1–17. T. R. Sreeram and N. T. Sivaneri, FE-analysis of a moving beam using Lagrangian multiplier method, International Journal of Solids and Structures, 35 (28-29) (1998) 3675–3694. H. R. Oz, M. Pakdemirli and H. Boyaci, Non-linear vibrations and stability of an axially moving beam with timedependent velocity, International Journal of Non-Linear Mechanics, 36 (1) (2001) 107–115. U. Lee, J. H. Kim and H. M. Oh, Spectral analysis for the transverse vibration of an axially moving Timoshenko beam, Journal of Sound and Vibration, 271 (3-5) (2004) 685–703. Y. Q. Tang, L. Q. Chen and X.-D. Yang, Parametric resonance of axially moving Timoshenko beams with timedependent speed, Nonlinear Dynamics, 58 (4) (2009) 715–724. J. R. Chang et al., Vibration and stability of an axially moving Rayleigh beam, Applied Mathematical Modelling, 34 (6) (2010) 1482–1497. S. Park, H. H. Yoo and J. Chung, Eulerian and Lagrangian descriptions for the vibration analysis of a deploying beam, Journal of Mechanical Science and Technology, 27 (9) (2013) 2637–2643. L. Q. Chen and X. D. Yang, Nonlinear free transverse vibration of an axially moving beam: Comparison of two models, Journal of Sound and Vibration, 299 (1-2) (2007) 348–354. X. D. Yang and W. Zhang, Nonlinear dynamics of axially moving beam with coupled longitudinal-transversal vibrations, Nonlinear Dynamics, 78 (4) (2014) 2547–2556. M. H. Ghayesh and M. Amabili, Steady-state transverse response of an axially moving beam with time-dependent axial speed, International Journal of Non-Linear Mechanics, 49 (2013) 40–49. M. H. Ghayesh, S. Kazemirad and M. Amabili, Coupled longitudinal-transverse dynamics of an axially moving beam with an internal resonance, Mechanism and Machine Theory, 52 (2012) 18–34. M. H. Ghayesh, Nonlinear forced dynamics of an axially moving viscoelastic beam with an internal resonance, International Journal of Mechanical Sciences, 53 (11) (2011) 1022–1037. K. Marynowski, Dynamic analysis of an axially moving sandwich beam with viscoelastic core, Composite Structures, 94 (9) (2012) 2931–2936. H. W. Lv et al., Transverse vibration of viscoelastic sandwich beam with time-dependent axial tension and axially varying moving velocity, Applied Mathematical Modelling, 38 (9-10) (2014) 2558–2585. U. Lee and H. Oh, Dynamics of an axially moving viscoelastic beam subject to axial tension, International Journal of Solids and Structures, 42 (8) (2005) 2381–2398. P. Zheng et al., An approximate analytical solution of an axially moving beam subjected to harmonic and parametric excitations simultaneously, Proceedings of First International Conference of Modelling and Simulation, 5 (2008) 340–345. M. H. Ghayesh, H. A. Kafiabad and T. Reid, Sub-and super-critical nonlinear dynamics of a harmonically excited axially moving beam, International Journal of Solids and Structures, 49 (1) (2012) 227–243. D. Liu, W. Xu and Y. Xu, Dynamic responses of axially moving viscoelastic beam under a randomly disordered periodic excitation, Journal of Sound and Vibration, 331 (17) (2012) 4045–4056. M. Simsek, T. Kocaturk and S. D. Akbas, Dynamic behavior of an axially functionally graded beam under action of a moving harmonic load, Composite Structures, 94 (8) (2012) 2358–2364. Q. Y. Yan, H. Ding and L. Q. Chen, Nonlinear dynamics of axially moving viscoelastic Timoshenko beam under parametric and external excitations, Applied Mathematics and Mechanics-English Edition, 36 (8) (2015) 971–984. S. H. Sandilo and W. T. van Horssen, On boundary damping for an axially moving tensioned beam, Journal of Vibration and Acoustics-Transactions of the ASME, 134 (1) (2012). X. D. Yang, C. W. Lim and K. M. Liew, Vibration and stability of an axially moving beam on elastic foundation, Advances in Structural Engineering, 13 (2) (2010) 241–247. S. M. Bagdatli and B. Uslu, Free vibration analysis of axially moving beam under non-ideal conditions, Structural Engineering and Mechanics, 54 (3) (2015) 597–605. G. Spelsberg-Korspeter, O. N. Kirillov and P. Hagedorn, Modeling and stability analysis of an axially moving beam with frictional contact, Journal of Applied Mechanics-Transactions of the ASME, 75 (3) (2008). G. Xu-Xia and W. Zhong-Min, Thermoelastic coupling vibration characteristics of the axially moving beam with frictional contact, Journal of Vibration and Acoustics-Transactions of the ASME, 132 (5) (2010). D. Liu, W. Xu and Y. Xu, Stochastic response of an axially moving viscoelastic beam with fractional order constitutive relation and random excitations, Acta Mechanica Sinica, 29 (3) (2013) 443–451. Z. X. Zhang and Z. D. Hu, An analysis of the lateral dynamic response of an axially moving cantilever beam under a moving mass, Advances in Design Technology, 1 and 2 (215-216) (2012) 934–940. G. L. Ma et al., Transverse free vibration of axially moving stepped beam with different length and tip mass, Shock and Vibration (2015). L. Wang, H. H. Chen and X. D. He, Study on modal shape of the vibration of an axially moving cantilever beam with tip mass, Mechatronics and Intelligent Materials, Pts 1 and 2 (211-212) (2011) 200–204. W. Lin and N. Qiao, Vibration and stability of an axially moving beam immersed in fluid, International Journal of Solids and Structures, 45 (5) (2008) 1445–1457. Q. Ni et al., Free vibration and stability of a cantilever beam attached to an axially moving base immersed in fluid, Journal of Sound and Vibration, 333 (9) (2014) 2543–2555. M. W. Li, Q. Ni and L. Wang, Nonlinear dynamics of an underwater slender beam with two axially moving supports, Ocean Engineering, 108 (2015) 402–415. B. O. Al-Bedoor and Y. A. Khulief, Vibrational motion of an elastic beam with prismatic and revolute joints, Journal of Sound and Vibration, 190 (2) (1996) 195–206. D. F. Rossi et al., A review of automatic time-stepping strategies on numerical time integration for structural dynamics analysis, Engineering Structures, 80 (2014) 118–136.