Dynamic allocation strategy of VM resources with fuzzy transfer learning method
Tóm tắt
Từ khóa
Tài liệu tham khảo
Jin H, Gao W, Wu S et al (2011) Optimizing the live migration of virtual machine by CPU scheduling[J]. J Netw Comput Appl 34(4):1088–1096
Mhedheb Y, Jrad F, Tao J, et al. Load and thermal-aware VM scheduling on the cloud[C]// international conference on Algorithms & Architectures for parallel processing. Springer-Verlag New York, Inc. 2013
Gupta RK, Kumar PR (2017) Balance resource utilization (BRU) approach for the dynamic load balancing in cloud environment by using AR prediction model[J].Theoretical and experimental. Plant Physiol 29(4):24–50
Xiao Z, Song W, Chen Q (2013) Dynamic resource allocation using virtual Machines for Cloud Computing Environment[J]. IEEE Transactions on Parallel and Distributed Systems 24(6):1107–1117
Jaiganesh M, Antony Kumar AV (2013) B3: fuzzy-based data center load optimization in cloud computing. Math Probl Eng 2013:1–11
Domanal S G, Reddy G R M. An efficient cost optimized scheduling for spot instances in heterogeneous cloud environment[J]. Future Generation Computer Systems, 2018:S0167739X17303667
Zare J, Abolfazli S, Shojafar M, et al. Resource scheduling in Mobile cloud computing: taxonomy and open challenges[C]// IEEE iThings 2015 (8th IEEE international conference on internet of things). IEEE, 2015
Hai Z, Tao K, Zhang X. An approach to optimized resource scheduling algorithm for open-source cloud systems[C]// Chinagrid conference. 2010
Al-Sayed M M, Khattab S, Omara F A. Prediction mechanisms for monitoring state of cloud resources using Markov chain model[J]. Journal of Parallel and Distributed Computing, 2016:S0743731516300181
Paulraj G J L, Francis S A J, Peter J D, et al. A combined forecast-based virtual machine migration in cloud data centers[J] .Computers & Electrical Engineering, 2018
AlSayed MM, Khattab S, Omara FA (2016) Prediction mechanisms for monitoring state of cloud resources using Markov chain model[J]. Journal of Parallel & Distributed Computing 96:163–171
Bey KB, Benhammadi F, Gessoum Z et al (2011) CPU load prediction using neuro-fuzzy and Bayesian inferences[J]. Neurocomputing 74(10):1606–1616
Chen Y , Cao J , Guo P . CPU Load Prediction Based on a Multidimensional Spatial Voting Model.[C]// IEEE International Conference on Data Science & Data Intensive Systems. IEEE, 2016
Mason K , Duggan M , Barrett E , et al. Predicting host CPU utilization in the cloud using evolutionary neural networks[J]. Future Generation Computer Systems, 2018:S0167739X17322793
Zhang Y, Sun W, Inoguchi Y. CPU load predictions on the computational grid[C]// IEEE international symposium on cluster computing & the grid. IEEE, 2014
Feng D, Wu Z, Zuo DC (2019) A multiobjective migration algorithm as a resource consolidation strategy in cloud computing. PLoS One 14(2):1–25
Zhang Y, Sun W, Inoguchi Y (2008) Predict task running time in grid environments based on CPU load predictions[J]. Futur Gener Comput Syst 24(6):489–497
Baldini I, Fink S J, Altman E R. Predicting GPU Performance from CPU Runs Using Machine Learning.[C]//IEEE International Symposium on Computer Architecture & High Performance Computing. IEEE Computer Society, 2014
Wang Z, Zheng L, Chen Q, et al. CAP: co-scheduling based on asymptotic profiling in CPU+GPU hybrid systems[C]//proceedings of the 2013 international workshop on programming models and applications for multicores and Manycores. 2013
Bey KB, Benhammadi F, Mokhtari A et al (2010) Mixture of ANFIS systems for CPU load prediction in metacomputing environment[J]. Futur Gener Comput Syst 26(7):1003–1011
Ardalani N, Lestourgeon C, Sankaralingam K , et al. Cross-architecture performance prediction (XAPP) using CPU code to predict GPU performance[J]. ACM Press the 48th International Symposium, 2015:725–737
Duggan M , Mason K , Duggan J , et al. Predicting host CPU utilization in cloud computing using recurrent neural networks[C]//Internet Technology & Secured Transactions. IEEE, 2018
Kato T, Kashima H, Sugiyama M et al (2010) Conic programming for multitask learning[J]. IEEE Trans Knowl Data Eng 22(7):957–968
la Vega de León Antonio D, Beining C, Gillet VJ (2018) Effect of missing data on multitask prediction methods[J]. Journal of Chem informatics 10(1):26
Lin D, An X, Zhang J Doublebootstrapping source data selection for instance based transfer learning. Pattern Recognition letters 34(11):1279–1285
Jiang S, Xu Y, Song H, Wu Q et al (2018) Multi-instance transfer metric learning by weighted distribution and consistent maximum likelihood estimation. Neurocomputing 321:49–60
Wang Y , Zhai J , Li Y , et al. Transfer learning with partial related “instance-feature” knowledge[J]. Neurocomputing, 2018: S092523121830568X
Biondi GO, Prati RC (2015) Setting parameters for support vector machines using transfer learning[J]. Journal of Intelligent & Robotic Systems 80(1):295–311
Mihalkova L, Mooney R J. Transfer learning from minimal target data by mapping across relational domains[C]// international Jont conference on Artifical intelligence. 2009
Cambria E, White B (2014) Jumping NLP curves: a review of natural language processing research [review article][J]. IEEE Comput Intell Mag 9(2):48–57
Jing Y, Li T, Huang J et al (2016) An incremental attribute reduction approach based on knowledge granularity under the attribute generalization[J]. Int J Approx Reason 76:80–95
Kewen Li, Ming-Wen Shao, Wei-Zhi Wu. A data reduction method in formal fuzzy contexts[J]. Int J Mach Learn Cybern, 2016:1–11
D’Aspremont A, Ghaoui LE, Lanckriet JGRG (2007) A direct formulation for sparse PCA using Semidefinite programming[J]. SIAM Rev 49(3):434–448
Alandkar L , Gengaje S . Novel adaptive learning scheme for GMM[C]// international conference on wireless communications. IEEE, 2018
Jing L, Ng MK, Huang JZ (2007) An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data[J]. IEEE Transactions on Knowledge & Data Engineering 19(8):1026–1041
Dempster A P. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of Royal Statistical Society B, 1977, 39
Jang J-SR (1993) ANFIS: adaptive-network- based fuzzy inference system[J]. IEEE Transactions on Systems, Man and Cybernetics 23(3):665–685
Xu H, Caramanis C, Sanghavi S (2012) Robust PCA via Outlier Pursuit[J]. IEEE Trans Inf Theory 58(5):3047–3064
Yan S, Xu D, Zhang B et al (2006) Graph embedding and extensions: a general framework for dimensionality reduction[J]. IEEE Trans Pattern Anal Mach Intell 29(1):40–51
Zhang S, Yin X, He C. The automatic estimating method of the in-degree of nodes in associated semantic network oriented to big data[M]. Kluwer Academic Publishers, 2016
Merlet J (2006) Jacobian, manipulability, condition number, and accuracy of parallel robots[J]. J Mech Des 128(128):199–206
Hua Z, Jie L, Guangquan Z et al (2018) Fuzzy transfer learning using an infinite Gaussian mixture model and active learning[J]. IEEE Trans Fuzzy Syst:1–1