Dynamic Stability for Steady Prandtl Solutions

Annals of PDE - Tập 9 - Trang 1-33 - 2023
Yan Guo1, Yue Wang2, Zhifei Zhang3
1Division of Applied Mathematics, Brown University, Providence, USA
2School of Mathematical Sciences, Capital Normal University, Beijing, China
3School of Mathematical Sciences, Peking University, Beijing, China

Tóm tắt

By establishing an invariant set (1.11) for the Prandtl equation in Crocco transformation, we prove the orbital and asymptotic stability of Blasius-like steady states against Oleinik’s monotone solutions.

Tài liệu tham khảo

Alexandre, R., Wang, Y., Xu, C.-J., Yang, T.: Well-posedness of the Prandtl equation in Sobolev spaces. J. Amer. Math. Soc. 28, 745–784 (2015) Blasius, H.: Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z. Angew. Math. Phys. 56, 1–37 Chen, D., Wang, Y., Zhang, Z.: Well-posedness of the linearized Prandtl equation around a non-monotonic shear flow. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 35, 1119–1142 (2018) Collot, C., Ghoul, T.E., Ibrahim, S., Masmoudi, N.: On singularity formation for the two-dimensional unsteady Prandtl system around the axis. J. Eur. Math. Soc. 24, 3703–3800 (2022) Collot, C., Ghoul, T. E., Masmoudi, N.: Singularities and unsteady separation for the inviscid two-dimensional Prandtl’s system, arXiv:1903.08244 Dalibard, A.-L., Masmoudi, N.: Separation for the stationary Prandtl equation. Publ. Math. Inst. Hautes Études Sci. 130, 187–297 (2019) Dietert, H., Gérard-Varet, D.: Well-posedness of the Prandtl equations without any structural assumption. Ann. PDE 5(8), 51 (2019) E. W., Engquist, B.: Blowup of solutions of the unsteady Prandtl’s equation. Comm. Pure Appl. Math., 50, 1287-1293 (1997) Gao, C., Zhang, L.: On the Steady Prandtl Boundary Layer Expansions, arXiv: 2001.10700 Gérard-Varet, D., Dormy, E.: On the ill-posedness of the Prandtl equation. J. Amer. Math. Soc. 23, 591–609 (2010) Gérard-Varet, D., Maekawa, Y.: Sobolev stability of Prandtl expansions for the steady Navier-Stokes equations. Arch. Ration. Mech. Anal. 233, 1319–1382 (2019) Gérard-Varet, D., Maekawa, Y., Masmoudi, N.: Gevrey stability of Prandtl expansions for 2D Navier-Stokes flows. Duke Math. J. 167, 2531–2631 (2018) Gérard-Varet, D., Masmoudi, N.: Well-posedness for the Prandtl system without analyticity or monotonicity. Ann. Sci. Éc. Norm. Supér 48, 1273–1325 (2015) Gérard-Varet, D., Nguyen, T.: Remarks on the ill-posedness of the Prandtl equation. Asymptot. Anal. 77, 71–88 (2012) Grenier, E., Guo, Y., Nguyen, T.: Spectral instability of characteristic boundary layer flows. Duke Math. J. 165, 3085–3146 (2016) Grenier, E., Guo, Y., Nguyen, T.: Spectral instability of general symmetric shear flows in a two-dimensional channel. Adv. Math. 292, 52–110 (2016) Grenier, E., Guo, Y., Nguyen, T.: Spectral instability of Prandtl boundary layers: an overview. Analysis (Berlin) 35, 343–355 (2015) Grenier, E., Nguyen, T.: \(L^\infty \) instability of Prandtl layers. Ann. PDE 5(18), 36 (2019) Grenier, E., Nguyen, T.: Sublayer of Prandtl boundary layers. Arch. Ration. Mech. Anal. 229, 1139–1151 (2018) Guo, Y., Iyer, S.: Regularity and expansion for steady Prandtl equations. Commun. Math. Phys. 382, 1403–1447 (2021) Guo, Y., Iyer, S.: Validity of Steady Prandtl Layer Expansions, Comm. Pure Appl. Math., https://doi.org/10.1002/cpa.22109. Guo, Y., Nguyen, T.: A note on Prandtl boundary layers. Comm. Pure Appl. Math. 64, 1416–1438 (2011) Guo, Y., Nguyen, T.: Prandtl boundary layer expansions of steady Navier-Stokes flows over a moving plate. Ann. PDE 3(10), 58 (2017) Hong, L., Hunter, J.K.: Singularity formation and instability in the unsteady inviscid and viscous Prandtl equations. Commun. Math. Sci. 1, 293–316 (2003) Ignatova, M., Vicol, V.: Almost global existence for the Prandtl boundary layer equations. Arch. Ration. Mech. Anal. 220, 809–848 (2016) Iyer, S.: On global-in-x stability of Blasius profiles. Arch. Ration. Mech. Anal. 237, 951–998 (2020) Iyer, S.: Global steady Prandtl expansion over a moving boundary III. Peking Math. J. 3, 47–102 (2020) Iyer, S.: Global steady Prandtl expansion over a moving boundary II. Peking Math. J. 2, 353–437 (2019) Iyer, S.: Global steady Prandtl expansion over a moving boundary I. Peking Math. J. 2, 155–238 (2019) Iyer, S.: Steady Prandtl layers over a moving boundary: nonshear Euler flows. SIAM J. Math. Anal. 51, 1657–1695 (2019) Iyer, S.: Steady Prandtl boundary layer expansions over a rotating disk. Arch. Ration. Mech. Anal. 224, 421–469 (2017) Iyer, S., Masmoudi, N.: Global-in-x Stability of Steady Prandtl Expansions for 2D Navier-Stokes Flows, arXiv:2008.12347 Kato, T.: Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary, Seminar on nonlinear partial differential equations, 85-98, Math. Sci. Res. Inst. Publ., 2, (1984) Kukavica, I., Vicol, V., Wang, F.: The van Dommelen and Shen singularity in the Prandtl equations. Adv. Math. 307, 288–311 (2017) Li, W., Yang, T.: Well-posedness in Gevrey space for the Prandtl equations with non-degenerate critical points. J. Eur. Math. Soc. 22, 717–775 (2020) Lombardo, M.C., Cannone, M., Sammartino, M.: Well-posedness of the boundary layer equations. SIAM J. Math. Anal. 35, 987–1004 (2003) Maekawa, Y.: On the inviscid problem of the vorticity equations for viscous incompressible flows in the half-plane. Comm. Pure. Appl. Math. 67, 1045–1128 (2014) Masmoudi, N., Wong, T.: Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods. Comm. Pure Appl. Math. 68, 1683–1741 (2015) Oleinik, O.A., Samokhin, V.N.: Mathematical models in boundary layer theory, Applied Mathematics and Mathematical Computation 15 Chapman & Hall/CRC. Fla, Boca Raton (1999) Prandtl, L.: Uber flussigkeits-bewegung bei sehr kleiner reibung, pp. 484–491. Heidelberg, Teubner, Leipzig, In Verhandlungen des III Internationalen Mathematiker-Kongresses (1904) Sammartino, M., Caflisch, R.: Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations, Comm. Math. Phys. 192, 433–461 (1998) Sammartino, M., Caflisch, R.: Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution, Comm. Math. Phys., 192, 463-491 (1998) Schlichting, H., Gersten, K.: Boundary Layer Theory. 8th edition, Springer-Verlag (2000) Serrin, J.: Asymptotic behaviour of velocity profiles in the Prandtl boundary layer theory. Proc. R. Soc. Lond. A 299, 491–507 (1967) Shen, W., Wang, Y., Zhang, Z.: Boundary layer separation and local behavior for the steady Prandtl equation, Adv. Math., 389, Paper No. 107896, 25 pp (2021) Wang, C., Wang, Y., Zhang, Z.: Zero-viscosity limit of the Navier-Stokes equations in the analytic setting. Arch. Ration. Mech. Anal. 224, 555–595 (2017) Wang, Y., Zhang, Z.: Global \(C^\infty \) regularity of the steady Prandtl equation with favorable pressure gradient, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 38, 309-324 (2021) Wang Y., Zhang, Z.: Asymptotic behavior of the steady Prandtl equation, Math. Ann., https://doi.org/10.1007/s00208-022-02486-6 Wang, Y., Zhu, S.: Back flow of the two-dimensional unsteady Prandtl boundary layer under an adverse pressure gradient. SIAM J. Math. Anal. 52, 954–966 (2020) Xin, Z., Zhang, L.: On the global existence of solutions to the Prandtl’s system. Adv. Math. 181, 88–133 (2004) Xin, Z., Zhang, L., Zhao, J.: Global well-posedness and regularity of weak solutions to the Prandtl’s system, arXiv:2203.08988