Dynamic Stability for Steady Prandtl Solutions
Tóm tắt
By establishing an invariant set (1.11) for the Prandtl equation in Crocco transformation, we prove the orbital and asymptotic stability of Blasius-like steady states against Oleinik’s monotone solutions.
Tài liệu tham khảo
Alexandre, R., Wang, Y., Xu, C.-J., Yang, T.: Well-posedness of the Prandtl equation in Sobolev spaces. J. Amer. Math. Soc. 28, 745–784 (2015)
Blasius, H.: Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z. Angew. Math. Phys. 56, 1–37
Chen, D., Wang, Y., Zhang, Z.: Well-posedness of the linearized Prandtl equation around a non-monotonic shear flow. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 35, 1119–1142 (2018)
Collot, C., Ghoul, T.E., Ibrahim, S., Masmoudi, N.: On singularity formation for the two-dimensional unsteady Prandtl system around the axis. J. Eur. Math. Soc. 24, 3703–3800 (2022)
Collot, C., Ghoul, T. E., Masmoudi, N.: Singularities and unsteady separation for the inviscid two-dimensional Prandtl’s system, arXiv:1903.08244
Dalibard, A.-L., Masmoudi, N.: Separation for the stationary Prandtl equation. Publ. Math. Inst. Hautes Études Sci. 130, 187–297 (2019)
Dietert, H., Gérard-Varet, D.: Well-posedness of the Prandtl equations without any structural assumption. Ann. PDE 5(8), 51 (2019)
E. W., Engquist, B.: Blowup of solutions of the unsteady Prandtl’s equation. Comm. Pure Appl. Math., 50, 1287-1293 (1997)
Gao, C., Zhang, L.: On the Steady Prandtl Boundary Layer Expansions, arXiv: 2001.10700
Gérard-Varet, D., Dormy, E.: On the ill-posedness of the Prandtl equation. J. Amer. Math. Soc. 23, 591–609 (2010)
Gérard-Varet, D., Maekawa, Y.: Sobolev stability of Prandtl expansions for the steady Navier-Stokes equations. Arch. Ration. Mech. Anal. 233, 1319–1382 (2019)
Gérard-Varet, D., Maekawa, Y., Masmoudi, N.: Gevrey stability of Prandtl expansions for 2D Navier-Stokes flows. Duke Math. J. 167, 2531–2631 (2018)
Gérard-Varet, D., Masmoudi, N.: Well-posedness for the Prandtl system without analyticity or monotonicity. Ann. Sci. Éc. Norm. Supér 48, 1273–1325 (2015)
Gérard-Varet, D., Nguyen, T.: Remarks on the ill-posedness of the Prandtl equation. Asymptot. Anal. 77, 71–88 (2012)
Grenier, E., Guo, Y., Nguyen, T.: Spectral instability of characteristic boundary layer flows. Duke Math. J. 165, 3085–3146 (2016)
Grenier, E., Guo, Y., Nguyen, T.: Spectral instability of general symmetric shear flows in a two-dimensional channel. Adv. Math. 292, 52–110 (2016)
Grenier, E., Guo, Y., Nguyen, T.: Spectral instability of Prandtl boundary layers: an overview. Analysis (Berlin) 35, 343–355 (2015)
Grenier, E., Nguyen, T.: \(L^\infty \) instability of Prandtl layers. Ann. PDE 5(18), 36 (2019)
Grenier, E., Nguyen, T.: Sublayer of Prandtl boundary layers. Arch. Ration. Mech. Anal. 229, 1139–1151 (2018)
Guo, Y., Iyer, S.: Regularity and expansion for steady Prandtl equations. Commun. Math. Phys. 382, 1403–1447 (2021)
Guo, Y., Iyer, S.: Validity of Steady Prandtl Layer Expansions, Comm. Pure Appl. Math., https://doi.org/10.1002/cpa.22109.
Guo, Y., Nguyen, T.: A note on Prandtl boundary layers. Comm. Pure Appl. Math. 64, 1416–1438 (2011)
Guo, Y., Nguyen, T.: Prandtl boundary layer expansions of steady Navier-Stokes flows over a moving plate. Ann. PDE 3(10), 58 (2017)
Hong, L., Hunter, J.K.: Singularity formation and instability in the unsteady inviscid and viscous Prandtl equations. Commun. Math. Sci. 1, 293–316 (2003)
Ignatova, M., Vicol, V.: Almost global existence for the Prandtl boundary layer equations. Arch. Ration. Mech. Anal. 220, 809–848 (2016)
Iyer, S.: On global-in-x stability of Blasius profiles. Arch. Ration. Mech. Anal. 237, 951–998 (2020)
Iyer, S.: Global steady Prandtl expansion over a moving boundary III. Peking Math. J. 3, 47–102 (2020)
Iyer, S.: Global steady Prandtl expansion over a moving boundary II. Peking Math. J. 2, 353–437 (2019)
Iyer, S.: Global steady Prandtl expansion over a moving boundary I. Peking Math. J. 2, 155–238 (2019)
Iyer, S.: Steady Prandtl layers over a moving boundary: nonshear Euler flows. SIAM J. Math. Anal. 51, 1657–1695 (2019)
Iyer, S.: Steady Prandtl boundary layer expansions over a rotating disk. Arch. Ration. Mech. Anal. 224, 421–469 (2017)
Iyer, S., Masmoudi, N.: Global-in-x Stability of Steady Prandtl Expansions for 2D Navier-Stokes Flows, arXiv:2008.12347
Kato, T.: Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary, Seminar on nonlinear partial differential equations, 85-98, Math. Sci. Res. Inst. Publ., 2, (1984)
Kukavica, I., Vicol, V., Wang, F.: The van Dommelen and Shen singularity in the Prandtl equations. Adv. Math. 307, 288–311 (2017)
Li, W., Yang, T.: Well-posedness in Gevrey space for the Prandtl equations with non-degenerate critical points. J. Eur. Math. Soc. 22, 717–775 (2020)
Lombardo, M.C., Cannone, M., Sammartino, M.: Well-posedness of the boundary layer equations. SIAM J. Math. Anal. 35, 987–1004 (2003)
Maekawa, Y.: On the inviscid problem of the vorticity equations for viscous incompressible flows in the half-plane. Comm. Pure. Appl. Math. 67, 1045–1128 (2014)
Masmoudi, N., Wong, T.: Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods. Comm. Pure Appl. Math. 68, 1683–1741 (2015)
Oleinik, O.A., Samokhin, V.N.: Mathematical models in boundary layer theory, Applied Mathematics and Mathematical Computation 15 Chapman & Hall/CRC. Fla, Boca Raton (1999)
Prandtl, L.: Uber flussigkeits-bewegung bei sehr kleiner reibung, pp. 484–491. Heidelberg, Teubner, Leipzig, In Verhandlungen des III Internationalen Mathematiker-Kongresses (1904)
Sammartino, M., Caflisch, R.: Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations, Comm. Math. Phys. 192, 433–461 (1998)
Sammartino, M., Caflisch, R.: Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution, Comm. Math. Phys., 192, 463-491 (1998)
Schlichting, H., Gersten, K.: Boundary Layer Theory. 8th edition, Springer-Verlag (2000)
Serrin, J.: Asymptotic behaviour of velocity profiles in the Prandtl boundary layer theory. Proc. R. Soc. Lond. A 299, 491–507 (1967)
Shen, W., Wang, Y., Zhang, Z.: Boundary layer separation and local behavior for the steady Prandtl equation, Adv. Math., 389, Paper No. 107896, 25 pp (2021)
Wang, C., Wang, Y., Zhang, Z.: Zero-viscosity limit of the Navier-Stokes equations in the analytic setting. Arch. Ration. Mech. Anal. 224, 555–595 (2017)
Wang, Y., Zhang, Z.: Global \(C^\infty \) regularity of the steady Prandtl equation with favorable pressure gradient, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 38, 309-324 (2021)
Wang Y., Zhang, Z.: Asymptotic behavior of the steady Prandtl equation, Math. Ann., https://doi.org/10.1007/s00208-022-02486-6
Wang, Y., Zhu, S.: Back flow of the two-dimensional unsteady Prandtl boundary layer under an adverse pressure gradient. SIAM J. Math. Anal. 52, 954–966 (2020)
Xin, Z., Zhang, L.: On the global existence of solutions to the Prandtl’s system. Adv. Math. 181, 88–133 (2004)
Xin, Z., Zhang, L., Zhao, J.: Global well-posedness and regularity of weak solutions to the Prandtl’s system, arXiv:2203.08988