Dynamic Scaling of the Generalized Complementary Relationship Improves Long-term Tendency Estimates in Land Evaporation

Advances in Atmospheric Sciences - Tập 37 - Trang 975-986 - 2020
Jozsef Szilagyi1,2, Richard Crago3, Ning Ma4
1Department of Hydraulic and Water Resources Engineering, Budapest University of Technology, Budapest, Hungary
2Conservation and Survey Division, School of Natural Resources, University of Nebraska-Lincoln, Lincoln, USA
3Department of Civil and Environmental Engineering, Bucknell University, Lewisburg, USA
4Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

Tóm tắt

Most large-scale evapotranspiration (ET) estimation methods require detailed information of land use, land cover, and/or soil type on top of various atmospheric measurements. The complementary relationship of evaporation (CR) takes advantage of the inherent dynamic feedback mechanisms found in the soil-vegetation-atmosphere interface for its estimation of ET rates without the need of such biogeophysical data. ET estimates over the conterminous United States by a new, globally calibrated, static scaling (GCR-stat) of the generalized complementary relationship (GCR) of evaporation were compared to similar estimates of an existing, calibration-free version (GCR-dyn) of the GCR that employs a temporally varying dynamic scaling. Simplified annual water balances of 327 medium and 18 large watersheds served as ground-truth ET values. With long-term monthly mean forcing, GCR-stat (also utilizing precipitation measurements) outperforms GCR-dyn as the latter cannot fully take advantage of its dynamic scaling with such data of reduced temporal variability. However, in a continuous monthly simulation, GCR-dyn is on a par with GCR-stat, and especially excels in reproducing long-term tendencies in annual catchment ET rates even though it does not require precipitation information. The same GCR-dyn estimates were also compared to similar estimates of eight other popular ET products and they generally outperform all of them. For this reason, a dynamic scaling of the GCR is recommended over a static one for modeling long-term behavior of terrestrial ET.

Tài liệu tham khảo

Baldocchi, D. D., 2020: How eddy covariance flux measurements have contributed to our understanding of Global Change Biology. Global Change Biol., 26, 242–260, https://doi.org/10.1111/gcb.14807. Biederman, J. A., and Coauthors, 2016: Terrestrial carbon balance in a drier world: The effects of water availability in southwestern North America. Global Change Biol., 22, 1867–1879, https://doi.org/10.1111/gcb.13222. Bouchet, R. J., 1963: Evapotranspiration réelle et potentielle, signification climatique. Int. Assoc. Sci. Hydrol., 22, 134–142. Bowen, I. S., 1926: The ratio of heat losses by conduction and by evaporation from any water surface. Phys. Rev., 27, 779–787, https://doi.org/10.1103/PhysRev.27.779. Brutsaert, W., 1982: Evaporation into the Atmosphere: Theory, History and Applications. Springer, 302 pp, https://doi.org/10.1007/978-94-017-1497-6. Brutsaert, W., 2015: A generalized complementary principle with physical constraints for land- surface evaporation. Water Resour. Res., 51, 8087–8093, https://doi.org/10.1002/2015WR017720. Brutsaert, W., L. Cheng, and L. Zhang, 2020: Spatial distribution of global landscape evaporation in the early twenty-first century by means of a generalized complementary approach. J. Hydromet., 21, 287–298, https://doi.org/10.1175/JHM-D-19-0208.1. Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface — hydrology model with the Penn State — NCAR MM7 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129(4), 569–585, https://doi.org/10.1175/1720-0493(2001)129<0769:CAALSH>2.0.CN;2. Condon, L. E., A. L. Atchley, and R. M. Maxwell, 2020: Evapotranspiration depletes groundwater under warming over the contiguous United States. Nature Comm., 11, 873, https://doi.org/10.1038/s41467-020-14688-0. Crago, R., J. Szilagyi, R. Qualls, and J. Huntington, 2016: Rescaling the complementary relationship for land surface evaporation. Water Resour. Res., 52, 8461–8471, https://doi.org/10.1002/2016WR019753. Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteorol., 33, 140–158, https://doi.org/10.1175/1520-0450(1994)033<0140:AST-MFM>2.0.CO;2. de Vries, D. A., 1959: The influence of irrigation on the energy balance and the climate near the ground. J. Meteorol., 16, 256–270, https://doi.org/10.1175/1520-0469(1959)016<0256:TIOIOT>2.0.CO;2. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteorol. Soc., 137(656), 553–597, https://doi.org/10.1002/qj.828. Fang, H. L., F. Baret, S. Plummer, and G. Schaepman-Strub, 2019: An overview of global leaf area Index (LAI): Methods, products, validation, and applications. Rev. Geophys., 53, 739–799, https://doi.org/10.1029/2018rg000608. Feng, X. M., and Coauthors, 2016: Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change, 6, 1019–1022, https://doi.org/10.1038/nclimate3092. Fisher, J. B., and Coauthors, 2017: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res., 53, 2618–2626, https://doi.org/10.1002/2016wr020175. Gutman, G., and A. Ignatov, 1998: The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens., 19, 1533–1543, https://doi.org/10.1080/014311698215333. Jung, M., and Coauthors, 2011: Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res., 136, G00J07, https://doi.org/10.1029/2010jg001566. Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP — DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteorol. Soc., 83 (11), 1631–1644, https://doi.org/10.1175/BAMS-83-11-1631 Koster, R. D., and M. J. Suarez, 1996: Energy and water balance calculations in the Mosaic LSM. NASA Technical Memorandum, 104606. Leuning, R., Y. Q. Zhang, A. Rajaud, H. Cleugh, and K. Tu, 2008: A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation. Water Resour. Res., 44, W10419, https://doi.org/10.1029/2007WR006562. Li, J. D., F. Chen, G. Zhang, M. Barlage, Y. J. Gan, Y. F. Xin, and C. Wang, 2018: Impacts of land cover and soil texture uncertainty on land model simulations over the Central Tibetan Plateau. J. Adv. Model. Earth Syst., 10, 2121–2146, https://doi.org/10.1029/2018MS001377. Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99(D7), 14415–14428, https://doi.org/10.1029/94JD00483. Liu, W. B., L. Wang, J. Zhou, Y. Z. Li, F. B. Sun, G. B. Fu, X. P. Li, and Y.-F. Sang, 2016: A worldwide evaluation of basin-scale evapotranspiration estimates against the water balance method. J. Hydrol., 538, 82–95, https://doi.org/10.1016/j.jhydrol.2016.04.006. Ma, N., and J. Szilagyi, 2019: The CR of evaporation: A calibration-free diagnostic and benchmarking tool for large-scale terrestrial evapotranspiration modeling. Water Resour. Res., 55(8), 7246–7274, https://doi.org/10.1029/2019WR024867. Ma, N., G.-Y. Niu, Y. L. Xia, X. T. Cai, Y. S. Zhang, Y. M. Ma, and Y. H. Fang, 2017: A systematic evaluation of Noah-MP in simulating land-atmosphere energy, water, and carbon exchanges over the continental United States. J. Geophys. Res., 122(22), 12245–12268, https://doi.org/10.1002/2017JD027597. Ma, N., J. Szilagyi, Y. S. Zhang, and W. B. Liu, 2019: Complementary-relationship-based modeling of terrestrial evapotranspiration across China during 1982–2012: Validations and spatiotemporal analyses. J. Geophys. Res., 124, 4326–4351, https://doi.org/10.1029/2018JD029850. Martens, B., and Coauthors, 2017: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev., 10(5), 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017. Mesinger, F., and Coauthors, 2006: North American regional reanalysis. Bull. Amer. Meteorol. Soc., 83, 343–360, https://doi.org/10.1175/BAMS-87-3-343. Miralles, D. G., T. R. H. Holmes, R. A. M. De Jeu, J. H. Gash, A. G. C. A. Meesters, and A. J. Dolman, 2011: Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci., 15(2), 453–469, https://doi.org/10.5194/hess-15-453-2011. Morton, F. I., 1983: Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. J. Hydrol., 66, 1–76, https://doi.org/10.1016/0022-1694(83)90177-4. Mueller, B., and Coauthors, 2011: Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett., 38, L06402, https://doi.org/10.1029/2010gl046230. Pendergrass, A. G., and Coauthors, 2020: Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Clim. Change, 10, 191–199, https://doi.org/10.1038/s41558-020-0709-0. Penman, H. L., 1948: Natural evaporation from open water, bare soil and grass. Proc. Royal Soc. A: Math. Phys. Engin. Sci., 193, 120–145, https://doi.org/10.1098/rspa.1948.0037. Priestley, C. H. B., and R. J. Taylor, 1972: On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Wea. Rev., 100(2), 81–92, https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2. Senay, G. B., S. Leake, P. L. Nagler, G. Artan, J. Dickinson, J. T. Cordova, and E. P. Glenn, 2011: Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods. Hydrol. Process., 25(26), 4037–4049, https://doi.org/10.1002/hyp.8379. Seneviratne, S. I., D. Lüthi, M. Litschi, and C. Schär, 2006: Land-atmosphere coupling and climate change in Europe. Nature, 443, 205–209, https://doi.org/10.1038/nature05095. Slatyer, R. O., and I. C. Mcllroy, 1961: Practical Microclimatology. CSIRO, 310 pp. Szilagyi, J., 2014: Temperature corrections in the Priestley-Taylor equation of evaporation. J. Hydrol., 519, 455–464, https://doi.org/10.1016/j.jhydrol.2014.07.040. Szilagyi, J., 2018a: Anthropogenic hydrological cycle disturbance at a regional scale: State-wide evapotranspiration trends (1979–2015) across Nebraska, USA. J. Hydrol., 557, 600–612, https://doi.org/10.1016/j.jhydrol.2017.12.062. Szilagyi, J., 2018b: A calibration-free, robust estimation of monthly land surface evapotranspiration rates for continental-scale hydrology. Hydrol. Res., 49(3), 648–657, https://doi.org/10.2166/nh.2017.078. Szilagyi, J., and J. Jozsa, 2008: New findings about the complementary relationship-based evaporation estimation methods. J. Hydrol., 354, 171–186, https://doi.org/10.1016/j.jhydrol.2008.03.008. Szilagyi, J., and J. Jozsa, 2009: Analytical solution of the coupled 2-D turbulent heat and vapor transport equations and the complementary relationship of evaporation. J. Hydrol., 372, 61–67, https://doi.org/10.1016/j.jhydrol.2009.03.037. Szilagyi, J., and A. Schepers, 2014: Coupled heat and vapor transport: The thermostat effect of a freely evaporating land surface. Geophys. Res. Lett., 41, 435–441, https://doi.org/10.1002/2013GL078979. Szilagyi, J., and J. Jozsa, 2018: Evapotranspiration trends (1979–2015) in the Central Valley of California, USA: Contrasting tendencies during 1981–2007. Water Resour. Res., 54, 5620–5635, https://doi.org/10.1029/2018WR022704. Szilagyi, J., R. Crago, and R. Qualls, 2017: A calibration-free formulation of the complementary relationship of evaporation for continental-scale hydrology. J. Geophys. Res., 222, 264–278, https://doi.org/10.1002/2016jd025611. Ukkola, A. M., M. G. De Kauwe, A. J. Pitman, M. J. Best, G. Abramowitz, V. Haverd, M. Decker, and N. Haughton, 2016: Land surface models systematically overestimate the intensity, duration and magnitude of seasonal-scale evaporative droughts. Environ. Res. Lett., 11(10), 104012, https://doi.org/10.1088/1748-9326/11/10/104012. Velpuri, N. M., G. B. Senay, R. K. Singh, S. Bohms, and J. P. Verdin, 2013: A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET. Remote Sens. Environ., 139, 35–49, https://doi.org/10.1016/j.rse.2013.07.013. Vinukollu, R. K., E. F. Wood, C. R. Ferguson, and J. B. Fisher, 2011: Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sens. Environ., 115, 801–823, https://doi.org/10.1016/j.rse.2010.11.006. Wang, K. C., and R. E. Dickinson, 2012: A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys., 50, RG2007, https://doi.org/10.1029/2011rg000373. Xia, Y. L., and D. Coauthors, 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2(NLDAS-2): I. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, https://doi.org/10.1029/2011jd016048. Zhang, Y. Q., F. H. S. Chiew, J. Peña-Arancibia, F. B. Sun, H. X. Li, and R. Leuning, 2017: Global variation of transpiration and soil evaporation and the role of their major climate drivers. J. Geophys. Res., 222, 6868–6881, https://doi.org/10.1002/2017JD027025. Zheng, H., and Z.-L. Yang, 2016: Effects of soil-type datasets on regional terrestrial water cycle simulations under different climatic regimes. J. Geophys. Res., 121, 14387–14402, https://doi.org/10.1002/2016JD027187.