Dynamic Role of miRNAs in Salivary Gland Carcinomas: From Biomarkers to Therapeutic Targets

Talita de Carvalho Kimura1,2, Reydson Alcides de Lima-Souza1,2, Tayná Figueiredo Maciel1,2, Luiz Paulo Kowalski3, Cláudia Malheiros Coutinho‑Camillo4, Erika Said Abu Egal1,5, Albina Altemani1, Fernanda Viviane Mariano1
1Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
2Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, Brazil
3Department of Head and Neck Surgery and Otorhinolaryngology, A.C. Camargo Cancer Center, São Paulo, Brazil
4International Research Center, A. C. Camargo Cancer Center, São Paulo, Brazil
5Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, USA

Tóm tắt

Salivary gland carcinomas (SGCs) are a rare group of malignant neoplasms of the head and neck region. MicroRNAs (miRNAs) are a class of small non-coding RNAs that have been associated with the control biological process and oncogenic mechanism by the regulation of gene expression at the post-transcriptional level. Recent evidence has suggested that miRNA expression may play a role in the tumorigenesis and carcinogenesis process in SGCs. This review provides a comprehensive literature review of the role of miRNAs expression in SGCs focusing on the diagnostic, prognostic, and therapeutic applications. In this review, numerous dysregulated miRNAs have demonstrated an oncogenic and suppressor role in SGCs. In the future, these miRNAs may eventually constitute useful diagnostic and prognostic biomarkers that may lead to a better understanding of SGCs oncogenesis. Additionally, the development of therapeutic agents based on miRNAs may be a promising target in SGC treatment.

Từ khóa


Tài liệu tham khảo

Yan F, Lao WP, Nguyen SA, Sharma AK, Day TA (2022) Elective neck dissection in salivary gland malignancies: systematic review and meta-analysis. Head Neck 44:505–517. https://doi.org/10.1002/hed.26923 El-Naggar AK, Chan JKC, Grandis JR, Takata T, Slootweg PJ (2017) World Health Organization Classification of Head and Neck Tumours Stenman G, Persson F, Andersson MK (2014) Diagnostic and therapeutic implications of new molecular biomarkers in salivary gland cancers. Oral Oncol 50:683–690 Zhang L, Lu Q, Chang C (2020) Epigenetics in health and disease. Adv Exp Med Biol 1253:3–55. https://doi.org/10.1007/978-981-15-3449-2_1 Abdolrahmani A, Kardouni Khoozestani N, Azmoudeh-Ardalan F, Shamshiri AR (2022) Prognostic impact of MUC1 and potential regulatory miR-145 and miR-21 expression in salivary mucoepidermoid carcinoma. Head Neck Pathol. https://doi.org/10.1007/s12105-022-01475-0 Lynam-Lennon N, Maher SG, Reynolds JV (2009) The roles of microRNA in cancer and apoptosis. Biol Rev 84:55–71. https://doi.org/10.1111/j.1469-185X.2008.00061.x Gasche JA, Goel A (2012) Epigenetic mechanisms in oral carcinogenesis. Futur Oncol 8:1407–1425. https://doi.org/10.2217/fon.12.138 Shin J-A, Li C, Choi E-S, Cho S-D, Cho N-P (2013) High expression of microRNA-127 is involved in cell cycle arrest in MC-3 mucoepidermoid carcinoma cells. Mol Med Rep 7:708–712. https://doi.org/10.3892/mmr.2012.1222 Denaro M, Navari E, Ugolini C, Seccia V, Donati V, Pietro CA et al (2019) A microRNA signature for the differential diagnosis of salivary gland tumors. PLoS One. 14:e0210968. https://doi.org/10.1371/journal.pone.0210968 Kang J-W, Eun Y-G, Lee Y-C (2021) Diagnostic value of salivary miRNA in head and neck squamous cell cancer: systematic review and meta-analysis. Int J Mol Sci 22:7026 Dos Santos ES, Normando AGC, Scarini JF, Crescencio LR, de Lima-Souza RA, Mariano FV et al (2021) Diagnostic and prognostic value of miRNAs on salivary gland tumors: a systematic review and meta-analysis. Oral Maxillofac Surg 25:445–456. https://doi.org/10.1007/s10006-021-00952-0 Gao R, Cao C, Zhang M, Lopez M-C, Yan Y, Chen Z et al (2014) A unifying gene signature for adenoid cystic cancer identifies parallel MYB-dependent and MYB-independent therapeutic targets. Oncotarget. 5:12528–12542. https://doi.org/10.18632/oncotarget.2985 Nurul-Syakima AM, Learn-Han L, Yoke-Kqueen C (2014) miR-205 in situ expression and localization in head and neck tumors—a tissue array study. Asian Pac J Cancer Prev 15:9071–9075 Veit JA, Scheckenbach K, Schuler PJ, Laban S, Wiggenhauser PS, Thierauf J et al (2015) MicroRNA expression in differentially metastasizing tumors of the head and neck: adenoid cystic versus squamous cell carcinoma. Anticancer Res 35:1271–1277 Boštjančič E, Hauptman N, Grošelj A, Glavač D, Volavšek M (2017) Expression, mutation, and amplification status of EGFR and Its correlation with five miRNAs in salivary gland tumours. Biomed Res Int 2017:1–11 Santos PRB, Coutinho-Camillo CM, Soares FA, Freitas VS, Vilas-Bôas DS, Xavier FCA et al (2017) MicroRNAs expression pattern related to mast cell activation and angiogenesis in paraffin-embedded salivary gland tumors. Pathol - Res Pract 213:1470–1476 Andreasen S, Tan Q, Agander TK, Steiner P, Bjørndal K, Høgdall E et al (2018) Adenoid cystic carcinomas of the salivary gland, lacrimal gland, and breast are morphologically and genetically similar but have distinct microRNA expression profiles. Mod Pathol 31:1211–1225 Han N, Lu H, Zhang Z, Ruan M, Yang W, Zhang C (2018) Comprehensive and in-depth analysis of microRNA and mRNA expression profile in salivary adenoid cystic carcinoma. Gene 678:349–360 Wang C, Li T, Yan F, Cai W, Zheng J, Jiang X et al (2018) Effect of simvastatin and microRNA-21 inhibitor on metastasis and progression of human salivary adenoid cystic carcinoma. Biomed Pharmacother 105:1054–1061 Brown AL, Al-Samadi A, Sperandio M, Soares AB, Teixeira LN, Martinez EF et al (2019) MiR-455-3p, miR-150 and miR-375 are aberrantly expressed in salivary gland adenoid cystic carcinoma and polymorphous adenocarcinoma. J Oral Pathol Med 48:840–845. https://doi.org/10.1111/jop.12894 Feng X, Matsuo K, Zhang T, Hu Y, Mays AC, Browne JD et al (2017) MicroRNA profiling and target genes related to metastasis of salivary adenoid cystic carcinoma. Anticancer Res 37:3473–3481 Balatti V, Oghumu S, Bottoni A, Maharry K, Cascione L, Fadda P et al (2019) MicroRNA profiling of salivary duct carcinoma versus Her2/Neu overexpressing breast carcinoma identify miR-10a as a putative breast related oncogene. Head Neck Pathol 13:344–354. https://doi.org/10.1007/s12105-018-0971-x Flores BCTCP, Lourenço SV, Damascena AS, Kowaslki LP, Soares FA, Coutinho-Camillo CM (2017) Altered expression of apoptosis-regulating miRNAs in salivary gland tumors suggests their involvement in salivary gland tumorigenesis. Virchows Arch 470:291–299. https://doi.org/10.1007/s00428-016-2049-z Koparal M, Bozgeyik E, Ceylan O, Ege B, Kurt MY, Yumrutas O et al (2022) Salivary gland tumors exhibit distinct miRNA signatures involved in Wnt/β-catenin signaling in formalin fixed paraffin embedded tissue samples. Pathol Res Pract 238:154119 Kim H, Eun S, Jeong W-J, Ahn S-H, Bae YJ, Lee JS et al (2022) Identification of differentially expressed microRNAs as potential biomarkers for carcinoma ex pleomorphic adenoma. Sci Rep 12:13383 Ramachandran I, Ganapathy V, Gillies E, Fonseca I, Sureban SM, Houchen CW et al (2014) Wnt inhibitory factor 1 suppresses cancer stemness and induces cellular senescence. Cell Death Dis 5:e1246–e1246 Cinpolat O, Unal ZN, Ismi O, Gorur A, Unal M (2017) Comparison of microRNA profiles between benign and malignant salivary gland tumors in tissue, blood and saliva samples: a prospective, case-control study. Braz J Otorhinolaryngol 83:276–284 Imangaliyev S, Matse JH, Bolscher JGM, Brakenhoff RH, Wong DTW, Bloemena E et al (2017) Discovery of salivary gland tumors’ biomarkers via co-regularized sparse-group lasso. Discov Sci. https://doi.org/10.1007/978-3-319-67786-6_21 Andreasen S, Tan Q, Agander TK, Hansen TVO, Steiner P, Bjørndal K et al (2018) MicroRNA dysregulation in adenoid cystic carcinoma of the salivary gland in relation to prognosis and gene fusion status: a cohort study. Virchows Arch 473:329–340. https://doi.org/10.1007/s00428-018-2423-0 Mitani Y, Roberts DB, Fatani H, Weber RS, Kies MS, Lippman SM et al (2013) MicroRNA profiling of salivary adenoid cystic carcinoma: association of miR-17–92 upregulation with poor outcome. PLoS One. 8:e66778. https://doi.org/10.1371/journal.pone.0066778 Zhu Q, Meng Y, Tang Y, Hou C, Sun N, Han W et al (2022) Identification of pivotal microRNAs involved in the development and progression of salivary adenoid cystic carcinoma. J Oral Pathol Med 51:160–171. https://doi.org/10.1111/jop.13261 Bayat P, Mahdavi N, Younespour S, Kardouni KN (2023) Interactive role of miR-29, miR-93, miR-205, and VEGF in salivary adenoid cystic carcinoma. Clin Exp Dent Res 9:112–121. https://doi.org/10.1002/cre2.678 Sun L, Liu B, Lin Z, Yao Y, Chen Y, Li Y et al (2015) MiR-320a acts as a prognostic factor and Inhibits metastasis of salivary adenoid cystic carcinoma by targeting ITGB3. Mol Cancer 14:96. https://doi.org/10.1186/s12943-015-0344-y Liang Y, Ye J, Jiao J, Zhang J, Lu Y, Zhang L et al (2017) Down-regulation of miR-125a-5p is associated with salivary adenoid cystic carcinoma progression via targeting p38/JNK/ERK signal pathway. Am J Transl Res 9:1101–1113 Naakka E, Barros-Filho MC, Adnan-Awad S, Al-Samadi A, Marchi FA, Kuasne H et al (2021) miR-22 and miR-205 drive tumor aggressiveness of mucoepidermoid carcinomas of salivary glands. Front Oncol 11:786150. https://doi.org/10.3389/fonc.2021.786150/full Kerche LE, de Sousa EA, Squarize CH, Oliveira KK, Marchi FA, Bettim BB et al (2022) EMT in salivary gland tumors: the expression of microRNAs miR-155 and miR-200c is associated with clinical-pathological parameters. Mol Biol Rep 49:2157–2167. https://doi.org/10.1007/s11033-021-07033-1 Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–222 Liu L, Hu Y, Fu J, Yang X, Zhang Z (2013) MicroRNA155 in the growth and invasion of salivary adenoid cystic carcinoma. J Oral Pathol Med 42:140–147. https://doi.org/10.1111/j.1600-0714.2012.01189.x Wang Y, Zhang C, Xia R, Han J, Sun B, Sun S et al (2018) The MYB/miR-130a/NDRG2 axis modulates tumor proliferation and metastatic potential in salivary adenoid cystic carcinoma. Cell Death Dis 9:917 Fu M, Chen C, Yang L, Yang W, Du Z, Li Y et al (2020) MicroRNA-103a-3p promotes metastasis by targeting TPD52 in salivary adenoid cystic carcinoma. Int J Oncol 57:574–586. https://doi.org/10.3892/ijo.2020.5069 Hou C, Sun N, Han W, Meng Y, Wang C, Zhu Q et al (2022) Exosomal microRNA-23b-3p promotes tumor angiogenesis and metastasis by targeting PTEN in salivary adenoid cystic carcinoma. Carcinogenesis 43:682–692 Jiang L-H, Ge M-H, Hou X-X, Cao J, Hu S-S, Lu X-X et al (2015) miR-21 regulates tumor progression through the miR-21-PDCD4-Stat3 pathway in human salivary adenoid cystic carcinoma. Lab Investig 95:1398–1408 Yan F, Wang C, Li T, Cai W, Sun J (2018) Role of miR-21 in the growth and metastasis of human salivary adenoid cystic carcinoma. Mol Med Rep 17:4237–4244. https://doi.org/10.3892/mmr.2018.8381 Binmadi N, Basile J, Perez P, Gallo A, Tandon M, Elias W et al (2018) miRNA expression profile of mucoepidermoid carcinoma. Oral Dis 24:537–543. https://doi.org/10.1111/odi.12800 He Q, Zhou X, Li S, Jin Y, Chen Z, Chen D et al (2013) MicroRNA-181a suppresses salivary adenoid cystic carcinoma metastasis by targeting MAPK–Snai2 pathway. Biochim Biophys Acta - Gen Subj 1830:5258–5266 Liu X-Y, Liu Z-J, He H, Zhang C, Wang Y-L (2015) MicroRNA-101-3p suppresses cell proliferation, invasion and enhances chemotherapeutic sensitivity in salivary gland adenoid cystic carcinoma by targeting Pim-1. Am J Cancer Res 5:3015–3029 Qiao Z, Zou Y, Zhao H (2019) MicroRNA-140-5p inhibits salivary adenoid cystic carcinoma progression and metastasis via targeting survivin. Cancer Cell Int 19:301. https://doi.org/10.1186/s12935-019-1018-4 Li Z, Zhang Q, Su H, Li H, Cao G, Xu J et al (2022) miR-5191 acts as a tumor suppressor in salivary adenoid cystic carcinoma by targeting Notch-2. Oral Dis 28:1871–1881. https://doi.org/10.1111/odi.13841 Tang Y, Zhu Q, Yang L, Meng Y, Zhang G, Zhou T et al (2023) MiR-200b-5p inhibits tumor progression in salivary adenoid cystic carcinoma via targeting BTBD1. Cell Signal 109:110748 Huo F, Zhang C, He H, Wang Y (2016) MicroRNA-144-3p inhibits proliferation and induces apoptosis of human salivary adenoid carcinoma cells via targeting of mTOR. Biotechnol Lett 38:409–416. https://doi.org/10.1007/s10529-015-2007-x Wang W-W, Chen B, Lei C-B, Liu G-X, Wang Y-G, Yi C et al (2017) miR-582-5p inhibits invasion and migration of salivary adenoid cystic carcinoma cells by targeting FOXC1. Jpn J Clin Oncol 47:690–698 Wang S, Zhang L, Shi P, Zhang Y, Zhou H, Cao X (2018) Genome-wide profiles of metastasis-associated mRNAs and microRNAs in salivary adenoid cystic carcinoma. Biochem Biophys Res Commun 500:632–638 Xie S, Yu X, Li Y, Ma H, Fan S, Chen W et al (2018) Upregulation of lncRNA ADAMTS9-AS2 promotes salivary adenoid cystic carcinoma metastasis via PI3K/Akt and MEK/Erk signaling. Mol Ther 26:2766–2778 Ju R, Huang Y, Guo Z, Han L, Ji S, Zhao L et al (2021) The circular RNAs differential expression profiles in the metastasis of salivary adenoid cystic carcinoma cells. Mol Cell Biochem 476:1269–1282. https://doi.org/10.1007/s11010-020-03989-z Bautista-Sánchez D, Arriaga-Canon C, Pedroza-Torres A, De La Rosa-Velázquez IA, González-Barrios R, Contreras-Espinosa L et al (2020) The promising role of miR-21 as a cancer biomarker and Its importance in RNA-based therapeutics. Mol Ther Nucleic Acids 20:409–420 Zhao W, Zhao J-J, Zhang L, Xu Q-F, Zhao Y-M, Shi X-Y et al (2015) Serum miR-21 level: a potential diagnostic and prognostic biomarker for non-small cell lung cancer. Int J Clin Exp Med 8:14759–14763 Bica-Pop C, Cojocneanu-Petric R, Magdo L, Raduly L, Gulei D, Berindan-Neagoe I (2018) Overview upon miR-21 in lung cancer: focus on NSCLC. Cell Mol Life Sci 75:3539–3551. https://doi.org/10.1007/s00018-018-2877-x Cao J, Zhang Y, Mu J, Yang D, Gu X, Zhang J (2021) Exosomal miR-21-5p contributes to ovarian cancer progression by regulating CDK6. Hum Cell 34:1185–1196. https://doi.org/10.1007/s13577-021-00522-2 Ren J, Kuang T-H, Chen J, Yang J-W, Liu Y-X (2017) The diagnostic and prognostic values of microRNA-21 in patients with gastric cancer: a meta-analysis. Eur Rev Med Pharmacol Sci 21:120–130 Sekar D, Krishnan R, Thirugnanasambantham K, Rajasekaran B, Islam VIH, Sekar P (2016) Significance of microRNA 21 in gastric cancer. Clin Res Hepatol Gastroenterol 40:538–545 Medimegh I, Omrane I, Privat M, Uhrhummer N, Ayari H, Belaiba F et al (2014) MicroRNAs expression in triple negative vs non triple negative breast cancer in Tunisia: interaction with clinical outcome. PLoS One. 9:e111877. https://doi.org/10.1371/journal.pone.0111877 Asangani IA, Rasheed SAK, Nikolova DA, Leupold JH, Colburn NH, Post S et al (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27:2128–2136 Xu P, Zhu Y, Sun B, Xiao Z (2016) Colorectal cancer characterization and therapeutic target prediction based on microRNA expression profile. Sci Rep 6:20616 Jackson BL, Grabowska A, Ratan HL (2014) MicroRNA in prostate cancer: functional importance and potential as circulating biomarkers. BMC Cancer 14:930. https://doi.org/10.1186/1471-2407-14-930 Kumarasamy M, Sabarimurugan K, Baxi G et al (2019) Prognostic value of miRNAs in head and neck cancers: a comprehensive systematic and meta-analysis. Cells. 8:772