Dynamic Response Analysis of Fractionally-Damped Generalized Bagley–Torvik Equation Subject to External Loads
Tóm tắt
Từ khóa
Tài liệu tham khảo
M. R. Ali, A. R. Hadhoud, and H. M. Srivastava, “Solution of Fractional Volterra-Fredholm Integro-Differential Equations under Mixed Boundary Conditions by Using the HOBW Method,” Adv. Difference Equ. 2019, 1–14 (2019).
R. L. Bagley and P. J. Torvik, “Fractional Calculus: A Different Approach to the Analysis of Viscoelas-tically Damped Structures,” AIAA J. 21, 741–748 (1983).
D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, Vol. 3 (World Scientific Publishing Company, Singapore, New Jersey, London, and Hong Kong, 2012).
D. Baleanu, B. Shiri, H. M. Srivastava, and M. A. Qurashi, “A Chebyshev Spectral Method Based on Operational Matrix for Fractional Differential Equations Involving Non-Singular Mittag-Leffler Kernel,” Adv. Difference Equ. 2018, 1–23 (2018).
D. Behera and S. Chakraverty, “Numerical Solution of Fractionally Damped Beam by Homotopy Perturbation Method,” Cen. Eur. J. Phys. 11, 792–798 (2013).
S. Chakraverty and D. Behera, “Dynamic Responses of Fractionally Damped Mechanical System Using Homotopy Perturbation Method,” Alexandria Engrg. J. 52, 557–562 (2013).
S. O. Edeki, T. Motsepa, C. M. Khalique, and G. O. Akinlabi, “The Greek Parameters of a Continuous Arithmetic Asian Option Pricing Model Via Laplace-Adomian Decomposition Method,” Open Phys. 16, 780–785 (2018).
L. Gaul, P. Klein, and S. Kemple, “Damping Description Involving Fractional Operators,” Mech. Syst. Signal Process. 5 (2), 8–88 (1991).
M. Gülsu, Y. Öztürk, and A. Anapali, “Numerical Solution the Fractional Bagley-Torvik Equation Arising in Fluid Mechanics,” Int. J. Comput. Math. 94, 173–184 (2017).
R. M. Jena and S. Chakraverty, “A New Iterative Method Based Solution for Fractional Black-Scholes Option Pricing Equations (BSOPE),” Springer Nature Appl. Sci. 1 (1), 1–11 (2019).
R. M. Jena and S. Chakraverty, “Residual Power Series Method for Solving Time-Fractional Model of Vibration Equation of Large Membranes,” J. Appl. Comput. Mech. 5, 603–615 (2019).
R. M. Jena and S. Chakraverty, “Solving Time-Fractional Navier-Stokes Equations Using Homotopy Perturbation Elzaki Transform,” Springer Nature Appl. Sci. 1 (1), 1–13 (2019).
R. M. Jena and S. Chakraverty, “Analytical Solution of Bagley-Torvik Equations Using Sumudu Transformation Method,” Springer Nature Appl. Sci. 1 (3), 1–6 (2019).
R. M. Jena, S. Chakraverty, and S. K. Jena, “Dynamic Response Analysis of Fractionally-Damped Beams Subjected to External Loads Using Homotopy Analysis Method,” J. Appl. Comput. Mech. 5, 355–366 (2019).
S. K. Jena, S. Chakraverty, R. M. Jena, and F. Tornabene, “A Novel Fractional Nonlocal Model and Its Application in Buckling Analysis of Euler-Bernoulli Nanobeam,” Mater. Res. Express 6 (8), 1–13 (2019).
A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations (North-Holland Mathematical Studies, Vol. 204, Elsevier (North-Holland) Science Publishers, Amsterdam, London, and New York, 2006).
R. C. Koeller, “Application of Fractional Calculus to the Theory of Viscoelasticity,” ASME J. Appl. Mech. 51, 299–307 (1984).
Z.-F. Liang and X.-Y. Tang, “Analytical Solution of Fractionally Damped Beam by Adomian Decomposition Method,” Appl. Math. Mech. 28, 219–228 (2007).
S.-J. Liao, The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems (Ph.D. thesis, Shanghai Jiao Tong University, Shanghai, 1992).
S.-J. Liao, “Homotopy Analysis Method: A New Analytical Technique for Nonlinear Problems,” Commun. Nonlinear Sci. Numer. Simulat. 2, 95–100 (1997).
S.-J. Liao, Beyond Perturbation: An Introduction to the Homotopy Analysis Method (CRC Press (Chapman and Hall), Boca Raton, 2003).
J. A. T. Machado, V. Kiryakova, and F. Mainardi, “Recent History of Fractional Calculus,” Commun. Nonlinear Sci. Numer. Simul. 16, 1140–1153 (2011).
K. S. Miller and B. Ross, An Introduction to Fractional Calculus and Fractional Differential Equations (A Wiley-Interscience Publication, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, and Singapore, 1993).
S. Momani and Z. Odibat, “Analytical Solution of a Time-Fractional Navier-Stokes Equation by Ado-mian Decomposition Method,” Appl. Math. Comput. 177, 488–494 (2006).
I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, Vol. 198 (Academic Press, New York, London, Sydney, Tokyo, and Toronto, 1999).
Y. A. Rossikhin and M. V. Shitikova, “Analysis of the Viscoelastic Rod Dynamics Via Models Involving Fractional Derivatives or Operators of Two Different Orders,” Shock Vibrat. Digest 36 (1), 3–26 (2004).
H. Singh, R. K. Pandey, and H. M. Srivastava, “Solving Non-Linear Fractional Variational Problems Using Jacobi Polynomials,” Mathematics 7, 1–24 (2019).
H. M. Srivastava and K. M. Saad, “Some New Models of the Time-Fractional Gas Dynamics Equation,” Adv. Math. Models Appl. 3 (1), 5–17 (2018).
H. M. Srivastava, K. M. Saad, and E. H. F. Al-Sharif, “New Analysis of the Time-Fractional and Space-Time Fractional-Order Nagumo Equation,” J. Inform. Math. Sci. 10, 545–561 (2018).
H. M. Srivastava, F. A. Shah, and R. Abass, “An Application of the Gegenbauer Wavelet Method for the Numerical Solution of the Fractional Bagley-Torvik Equation,” Russian J. Math. Phys. 26, 77–93 (2019).
L. E. Suarez and A. Shokooh, “An Eigenvector Expansion Method for the Solution of Motion Containing Fractional Derivatives,” ASME J. Appl. Mech. 64, 629–635 (1997).
A. M. Wazwaz, “The Camassa-Holm-KP Equations with Compact and Noncompact Travelling Wave Solutions,” Appl. Math. Comput. 170, 347–360 (2005).
A. M. Wazwaz, “Solitary Wave Solutions for Modified Forms of Degasperis-Procesi and Camassa-Holm Equations,” Phys. Lett. A 352 (6), 500–504 (2006).
Y. Wu and J.-H. He, “Homotopy Perturbation Method for Nonlinear Oscillators with Coordinate Dependent Mass,” Results Phys. 10, 270–271 (2018).
M. Yavuz and N. Ozdemir, “A Quantitative Approach to Fractional Option Pricing Problems with Decomposition Series,” Konuralp J. Math. 6, 102–109 (2018).