Dynamic Resource Management in MEC Powered by Edge Intelligence for Smart City Internet of Things

Springer Science and Business Media LLC - Tập 22 - Trang 1-12 - 2024
Xucheng Wan1
1School of Information and Intelligent Engineering, Ningbo City College of Vocational Technology, Ningbo, China

Tóm tắt

The Internet of Things (IoT) has become an infrastructure that makes smart cities possible. is both accurate and efficient. The intelligent production industry 4.0 period has made mobile edge computing (MEC) essential. Computationally demanding tasks can be delegated from the MEC server to the central cloud servers for processing in a smart city. This paper develops the integrated optimization framework for offloading tasks and dynamic resource allocation to reduce the power usage of all Internet of Things (IoT) gadgets subjected to delay limits and resource limitations. A Federated Learning FL-DDPG algorithm based on the Deep Deterministic Policy Gradient (DDPG) architecture is suggested for dynamic resource management in MEC networks. This research addresses the optimization issues for the CPU frequencies, transmit power, and IoT device offloading decisions for a multi-mobile edge computing (MEC) server and multi-IoT cellular networks. A weighted average of the processing load on the central MEC server (PMS), the system’s overall energy use, and the task-dropping expense is calculated as an optimization issue. The Lyapunov optimization theory formulates a random optimization strategy to reduce the energy use of IoT devices in MEC networks and reduce bandwidth assignment and transmitting power distribution. Additionally, the modeling studies demonstrate that, compared to other benchmark approaches, the suggested algorithm efficiently enhances system performance while consuming less energy.

Tài liệu tham khảo

Tian, K., et al.: Edge intelligence empowered dynamic offloading and resource management of MEC for smart city Internet of Things. Electronics 11(6), 879 (2022) Ma, K., et al.: Reliability-Constrained Throughput Optimization of Industrial Wireless Sensor Networks With Energy Harvesting Relay. IEEE Internet Things J. 8(17), 13343–13354 (2021) Xing, H., et al.: Dynamic resource allocation and task offloading for NOMA-Enabled IoT services in MEC. Secur. Commun. Netw. 2022 (2022) Zhao, M., Zhou, Y., Li, X., Cheng, W., Zhou, C., Ma, T., Huang, K.: Mapping urban dynamics (1992–2018) in Southeast Asia using consistent nighttime light data from DMSP and VIIRS. Remote Sens. Environ. 248, (2020) Khan, L.U., Yaqoob, I., Tran, N.H., Kazmi, S.M.A., Dang, T.N., Hong, C.S.: Edge-computing-enabled smart cities: A comprehensive survey. IEEE Internet Things J. 7, 10200–10232 (2020) Li, T., Xia, T., Wang, H., Tu, Z., Tarkoma, S., Han, Z.: Hui, P, Smartphone App Usage Analysis: Datasets, Methods, and Applications. IEEE Communications Surveys & Tutorials 24(2), 937–966 (2022) Cao, B., Fan, S., Zhao, J., Tian, S., Zheng, Z., Yan, Y.: Yang, P, Large-Scale Many-Objective Deployment Optimization of Edge Servers. IEEE Trans. Intell. Transp. Syst. 22(6), 3841–3849 (2021) El Haber, E., Nguyen, T.M., Assi, C., Ajib, W.: Macro-cell assisted task offloading in mec-based heterogeneous networks with wireless backhaul. IEEE Trans. Netw. Serv. Manag. 16, 1754–1767 (2019) Sun, G., Liao, D., Zhao, D., Xu, Z.: Yu, H, Live Migration for Multiple Correlated Virtual Machines in Cloud-Based Data Centers. IEEE Trans. Serv. Comput. 11(2), 279–291 (2018) Dai, M., Luo, L., Ren, J., Yu, H.: Sun, G, PSACCF: Prioritized Online Slice Admission Control Considering Fairness in 5G/B5G Networks. IEEE Transactions on Network Science and Engineering 9(6), 4101–4114 (2022) Lim, W.Y.B., Ng, J.S., Xiong, Z., Jin, J., Zhang, Y., Niyato, D., Leung, C.S., Miao, C.: Decentralized Edge Intelligence: A Dynamic Resource Allocation Framework for Hierarchical Federated Learning. IEEE Trans. Parallel Distrib. Syst. 33, 536–550 (2022) Sun, G., Xu, Z., Yu, H., Chang, V.: Dynamic Network Function Provisioning to Enable Network in Box for Industrial Applications. IEEE Trans. Industr. Inf. 17(10), 7155–7164 (2021) Li, Q., Lin, H., Tan, X., Du, S.: Consensus for Multiagent-Based Supply Chain Systems Under Switching Topology and Uncertain Demands. IEEE Transactions on Systems, Man, and Cybernetics: Systems 50(12), 4905–4918 (2020) Dai, W., Zhou, X., Li, D., Zhu, S., Wang, X.: Hybrid Parallel Stochastic Configuration Networks for Industrial Data Analytics. IEEE Trans. Industr. Inf. 18(4), 2331–2341 (2022) Wang, Q., Dai, W., Zhang, C., Zhu, J., Ma, X.: A compact constraint incremental method for random weight networks and its application. IEEE Trans. Neural. Netw. Learn. Syst. (2023) Liu, C., Tang, F., Hu, Y., Li, K., Tang, Z., Li, K.: Distributed task migration optimization in mec by extending multi-agent deep reinforcement learning approach. IEEE Trans. Parallel Distrib. Syst. 32, 1603–1614 (2021) Li, L., Yao, L.: Fault tolerant control of fuzzy stochastic distribution systems with packet dropout and time delay. IEEE Trans. Autom. Sci. Eng. (2023) Li, C., Dong, M., Xin, X., Li, J., Chen, X., Ota, K.: Efficient privacy-preserving in IoMT with blockchain and lightweight secret sharing. IEEE Internet of Things J. (2023) Yao, Y., Zhao, J., Li, Z., Cheng, X., Wu, L.: Jamming and Eavesdropping Defense Scheme Based on Deep Reinforcement Learning in Autonomous Vehicle Networks. IEEE Trans. Inf. Forensics Secur. 18, 1211–1224 (2023) Temesgene, D.A., Miozzo, M., Gündüz, D., Dini, P.: Distributed deep reinforcement learning for functional split control in energy harvesting virtualized small cells. IEEE Trans. Sustain. Comput 6, 626–640 (2021) Jannat, M.K.A., Islam, M.S., Yang, S., Liu, H.: Efficient Wi-Fi-Based Human Activity Recognition Using Adaptive Antenna Elimination. IEEE Access 11(105440–105454), 2023 (2023) Han, H., Fang, L., Lu, W., Chi, K., Zhai, W., Zhao, J.: A Novel Grant-Based Pilot Access Scheme for Crowded Massive MIMO Systems. IEEE Trans. Veh. Technol. 70, 11111–11115 (2021) Cheng, B., Zhu, D., Zhao, S., Chen, J.: Situation-Aware IoT Service Coordination Using the Event-Driven SOA Paradigm. IEEE Trans. Netw. Serv. Manage. 13(2), 349–361 (2016) Dai, X., Xiao, Z., Jiang, H., Alazab, M., Lui, J.C.S., Dustdar, S., Liu, J.: Task Co-Offloading for D2D-Assisted Mobile Edge Computing in Industrial Internet of Things. IEEE Trans. Industr. Inf. 19(1), 480–490 (2023) Jiang, H., Dai, X., Xiao, Z., Iyengar, A. K.: Joint Task offloading and resource allocation for energy-constrained mobile edge computing. IEEE Trans. Mob. Comput. (2022) Dai, X., Xiao, Z., Jiang, H., Lui, J.C.S.: UAV-assisted task offloading in vehicular edge computing networks. IEEE Trans. Mob. Comput. (2023) Fu, Q., Li, Z., Ding, Z., Chen, J., Luo, J., Wang, Y., Lu, Y, ED-DQN: An event-driven deep reinforcement learning control method for multi-zone residential buildings. Build. Environ. 242, (2023) Wang, S., Sheng, H., Zhang, Y., Yang, D., Shen, J., Chen, R.: Blockchain-empowered distributed multi-camera multi-target tracking in edge computing. IEEE Trans. Industr. Inform. (2023) Ning, Z.L., Wang, X.J., Rodrigues, J.J., Xia, F.: Joint computation offloading, power allocation, and channel assignment for 5G-enabled traffic management systems. IEEE Trans. Ind. Inform 15, 3058–3067 (2019) Singh, A., Wang, Y., Zhou, Y., Sun, J., Xu, X., Li, Y., Wang, X.: Utilization of antimony tailings in fiber-reinforced 3D printed concrete: A sustainable approach for construction materials. Constr. Build. Mater. 408, (2023) Cao, B., Li, Z., Liu, X., Lv, Z., He, H.: Mobility-Aware Multiobjective Task Offloading for Vehicular Edge Computing in Digital Twin Environment. IEEE J. Sel. Areas Commun. 41(10), 3046–3055 (2023) Luo, J., Wang, Y., Li, G.: The innovation effect of administrative hierarchy on intercity connection: The machine learning of twin cities. J. Innov. Knowl. 8(1), (2023) Luo, J., Wang, G., Li, G., Pesce, G.: Transport infrastructure connectivity and conflict resolution: a machine learning analysis. Neural Comput. Appl. 34(9), 6585–6601 (2022) Liu, C., Wu, T., Li, Z., Ma, T., Huang, J.: Robust online tensor completion for IoT streaming data recovery. IEEE Trans. Neural. Netw. Learn Sys. (2022) Liu, J., Fan, C., Peng, Y., Du, J., Wang, Z., Chu, C.: Emergent leader-follower relationship in networked multiagent systems. Sci. China Inf. Sci. (2023) Chen, X., Liu, G.Z.: Energy-Efficient Task Offloading and Resource Allocation via Deep Reinforcement Learning for Augmented Reality in Mobile Edge Networks. IEEE Internet Things J. 8, 10843–10856 (2021) Alimohammadirokni, M., Emadlou, A., Yuan, J.J.: The strategic resources of a gastronomy creative city: The case of San Antonio. Texas. Journal of Gastronomy and Tourism 5(4), 237–252 (2021) Yang, H., Song, K., Zhou, J.: Automated recognition model of geomechanical information based on operational data of tunneling boring machines. Rock Mech. Rock. Eng. pp 1–18, (2022) Chen, L., Yang, H., Song, K., Huang, W., Ren, X., Xu, H.: Failure mechanisms and characteristics of the Zhongbao landslide at Liujing Village, Wulong. China. Landslides 18(4), 1445–1457 (2021) Yang, H.Q., Xing, S.G., Wang, Q., Li, Z.: Model test on the entrainment phenomenon and energy conversion mechanism of flow-like landslides. Eng. Geol. 239, 119–125 (2018) Chen, Z., Gao, L. CURSOR: Configuration update synthesis using order rules. Paper presented at the IEEE INFOCOM 2023 - IEEE Conf. Comput. Commun. (2023) Lu, J., Osorio, C.: A Probabilistic Traffic-Theoretic Network Loading Model Suitable for Large-Scale Network Analysis. Transportation Science 52(6), 1509–1530 (2018) Chen, J., Wang, Q., Cheng, H.H., Peng, W., Xu, W.: A Review of Vision-Based Traffic Semantic Understanding in ITSs. IEEE Trans. Intell. Transp. Syst. 23(11), 19954–19979 (2022) Li, K., Ji, L., Yang, S., Li, H., Liao, X.: Couple-Group Consensus of Cooperative-Competitive Heterogeneous Multiagent Systems: A Fully Distributed Event-Triggered and Pinning Control Method. IEEE Transactions on Cybernetics 52(6), 4907–4915 (2022)