Các Trò Chơi Tiềm Năng Động: Trường Hợp Ngẫu Nhiên Thời Gian Rời Rạc

Dynamic Games and Applications - Tập 4 - Trang 309-328 - 2014
David González-Sánchez1, Onésimo Hernández-Lerma2
1SEPI–ESE–IPN, Mexico DF, Mexico
2Mathematics Department, CINVESTAV–IPN, Mexico DF, Mexico

Tóm tắt

Bài báo này đề cập đến một lớp các trò chơi ngẫu nhiên không hợp tác thời gian rời rạc không tĩnh. Mục tiêu của chúng tôi là ba điểm chính. Đầu tiên, chúng tôi đưa ra các điều kiện để tìm điểm cân bằng Nash thông qua phương pháp phương trình Euler. Thứ hai, chúng tôi xác định các tiểu lớp của các trò chơi tiềm năng động. Cuối cùng, trong một tiểu lớp này, chúng tôi xác định một tiểu lớp khác mà trong đó các điểm cân bằng Nash cũng là các giải pháp Pareto (hoặc hợp tác).

Từ khóa

#trò chơi tiềm năng động; điểm cân bằng Nash; phương trình Euler; trò chơi ngẫu nhiên không hợp tác; giải pháp Pareto

Tài liệu tham khảo

Acemoglu D (2009) Introduction to modern economic growth. Princeton University Press, Princeton Amir R, Nannerup N (2006) Information structure and the tragedy of the commons in resource extraction. J Bioecon 8:147–165 Aumann RJ (1974) Subjectivity and correlation in randomized strategies. J Math Econ 1:67–96 Aumann RJ (1987) Correlated equilibrium as an expression of Bayesian rationality. Econometrica 55:1–18 Bauso D, Giarre L, Pesenti R (2008) Consensus in noncooperative dynamic games: a multiretailer inventory application. IEEE Trans Autom Control 53:998–1003 Beckmann M, McGuire CB, Winsten CB (1956) Studies in the economics of transportation. Yale University Press, New Haven Bensoussan A, Frehse J, Yam P (2013) Mean field games and mean field type control theory. Springer, New York Brânzei R, Mallozzi L, Tijs S (2003) Supermodular games and potential games. J Math Econ 39:39–49 Candogan O, Menache I, Ozdaglar A, Parrillo PA (2011) Flows and decompositions of games: harmonic and potential games. Math Oper Res 36:474–503 Dechert WD (1978) Optimal control problems from second order difference equations. J Econ Theory 19:50–63 Dechert, W.D. (1997) Noncooperative dynamic games: a control theoretic approach. University of Houston. Unpublished manuscript Dechert WD, O’Donnell SI (2006) The stochastic lake game: a numerical solution. J Econ Dyn Control 30:1569–1587 Dockner EJ, Jorgensen S, Long NV, Sorger G (2000) Differential games in economics and management science. Cambridge University Press, Cambridge Dubey P, Haimanko O, Zapechelnyuk A (2006) Strategic complements and substitutes, and potential games. Games Econ Behav 54:77–94 González-Sánchez D, Hernández-Lerma O (2013) An inverse optimal problem in discrete-time stochastic control. J Differ Equ Appl 19:39–53 González-Sánchez D, Hernández-Lerma O (2014) On the Euler equation approach to discrete-time nonstationary optimal control problems. J Dyn Games 1:57–78 Gopalakrishnan R, Marden JR, Wierman A (2013) Potential games are necessary to ensure pure Nash equilibria in cost sharing games. Submitted for publication. http://ecee.colorado.edu/marden/files/ec_cost_sharing. Accessed 13 March 2014 Hernández-Lerma O, Lasserre JB (1996) Discrete-time Markov control processes: basic optimality criteria. Springer, New York Jørgensen S, Zaccour G (2004) Differential games in marketing. Kluwer Academic Publishers, Boston Josa-Fambellida R, Rincón-Zapatero JP (2007) New approach to stochastic optimal control. J Optim Theory Appl 135:163–177 Judd KL (1998) Numerical methods in economics. MIT Press, Cambridge Levhari D, Mirman LD (1980) The great fish war: an example using dynamic Cournot-Nash solution. Bell J Econ 11:322–334 Maldonado W, Moreira H (2003) A contractive method for computing the stationary solution of the Euler equation. Econ Bull 3:1–14 Maldonado W, Moreira H (2006) Solving Euler equations: classical methods and the \(C^1\) contraction mapping method revisited, Revista Brasileira de Economía 60, pp. 167–178. http://bibliotecadigital.fgv.br/ojs/index.php/rbe/article/view/925/514. Accessed 13 March 2014 Marden JR (2012) State based potential games. Automatica 48:3075–3088 Marden JR, Arslan G, Shamma JS (2009) Cooperative control and potential games. IEEE Trans Syst Man Cyber Part B 39:1393–1407 Martin-Herran G, Rincon-Zapatero JP (2005) Efficient Markov perfect Nash equilibrium: theory and application to dynamic fishery games. J Econ Dyn Control 29:1073–1096 Monderer D, Shapley LS (1996) Potential games. Games Econ Behav 14:124–143 Neyman A (1997) Correlated equilibrium and potential games. Int J Game Theory 26:223–227 Potters JAM, Raghavan TES, Tijs SH et al (2009) Pure equilibrium strategies for stochastic games via potential functions. In: Bernhard P (ed) Advances in dynamic games and application. Springer, New York Rosenthal RW (1973) A class of games possessing pure-strategy Nash equilibria. Int J Game Theory 2:65–67 Sandholm WH (2009) Large population potential games. J Econ Theory 144:1710–1725 Seierstad A (2009) Stochastic control in discrete and continuous time. Springer, New York Seierstad A (2013) Pareto improvements of Nash equilibria in differential games. Dyn Games Appl 67:70. doi:10.1007/s13235-013-0093-8 Slade ME (1994) What does an oligopoly maximize? J Ind Econ 42:45–61 Stokey NL, Lucas RE, Prescott EC (1989) Recursive methods in economic dynamics. Harvard University Press, Cambridge, MA Ui T (2001) Robust equilibria of potential games. Econometrica 69:1373–1380 Ui T (2008) Correlated equilibrium and concave games. Int J Game Theory 37:1–13