Dynamic Modeling of the Microalgae Cultivation Phase for Energy Production in Open Raceway Ponds and Flat Panel Photobioreactors

Matteo Marsullo1, Alberto Mian2, Adriano V. Ensinas2,3, Giovanni Manente1, Andrea Lazzaretto1, François Maréchal2
1Department of Industrial Engineering,, University of Padova, Italy
2Industrial Process and Energy System Engineering Group (IPESE), École Polytechnique Fédérale de Lausanne, Switzerland
3Universidade Federal do ABC, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ak, 2012, Effect of an organic fertilizer on growth of blue-green alga Spirulina platensis, Aquacult. Int., 20, 413, 10.1007/s10499-011-9473-5

Azadi, 2014, The carbon footprint and non-renewable energy demand of algae-derived biodiesel, Appl. Energy, 113, 1632, 10.1016/j.apenergy.2013.09.027

Bahadar, 2013, Progress in energy from microalgae: a review, Renew. Sustain. Energ. Rev., 27, 128, 10.1016/j.rser.2013.06.029

Béchet, 2013, Modeling the effects of light and temperature on algae growth: state of the art and critical assessment for productivity prediction during outdoor cultivation, Biotechnol. Adv., 31, 1648, 10.1016/j.biotechadv.2013.08.014

Borowitzka, 1999, Commercial production of microalgae: ponds, tanks, tubes and fermenters, J. Biotechnol., 70, 313, 10.1016/S0168-1656(99)00083-8

Brennan, 2010, Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sustain. Energ. Rev., 14, 557, 10.1016/j.rser.2009.10.009

Çelekli, 2009, Predictive modeling of biomass production by Spirulina platensis as function of nitrate and NaCl concentrations, Bioresour. Technol., 100, 1847, 10.1016/j.biortech.2008.09.042

Chisti, 2007, Biodiesel from microalgae, Biotechnol. Adv., 25, 294, 10.1016/j.biotechadv.2007.02.001

Collet, 2011, Life-cycle assessment of microalgae culture coupled to biogas production, Bioresour. Technol., 102, 207, 10.1016/j.biortech.2010.06.154

Cuaresma, 2011, Horizontal or vertical photobioreactors? How to improve microalgae photosynthetic efficiency, Bioresour. Technol., 102, 5129, 10.1016/j.biortech.2011.01.078

Davis, 2011, Techno-economic analysis of autotrophic microalgae for fuel production, Appl. Energy, 88, 3524, 10.1016/j.apenergy.2011.04.018

Doucha, 2006, Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate, J. Appl. Phycol., 18, 811, 10.1007/s10811-006-9100-4

Duffie, 2013, Solar Engineering of Thermal Processes, 4th edn, 10.1002/9781118671603

Fernández, 1997, A model for light distribution and average solar irradiance inside outdoor tubular photobioreactors for the microalgal mass culture, Biotechnol. Bioeng., 55, 701, 10.1002/(SICI)1097-0290(19970905)55:5

Fernández, 2013, Photobioreactors for the production of microalgae, Rev. Environ. Sci. Biotechnol., 12, 131, 10.1007/s11157-012-9307-6

Hadiyanto, 2013, Hydrodynamic evaluations in high rate algae pond (HRAP) design, Chem. Eng. J., 217, 231, 10.1016/j.cej.2012.12.015

Hempel, 2012, Biomass productivity and productivity of fatty acids and amino acids of microalgae strains as key characteristics of suitability for biodiesel production, J. Appl. Phycol., 24, 1407, 10.1007/s10811-012-9795-3

James, 2010, Modeling algae growth in an open-channel raceway, J. Comput. Biol., 17, 895, 10.1089/cmb.2009.0078

Janssen, 2003, Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects, Biotechnol. Bioeng., 81, 193, 10.1002/bit.10468

Jiménez, 2003, The feasibility of industrial production of Spirulina (Arthrospira) in Southern Spain, Aquaculture, 217, 179, 10.1016/S0044-8486(02)00118-7

Jorquera, 2010, Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors, Bioresour. Technol., 101, 1406, 10.1016/j.biortech.2009.09.038

Kochem, 2014, Characterization of a novel flat-panel airlift photobioreactor with an internal heat exchanger, Chem. Eng. Technol., 37, 59, 10.1002/ceat.201300420

Kumar, 2011, Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria, Bioresour. Technol., 102, 4945, 10.1016/j.biortech.2011.01.054

Le, 2010, Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics, Energy Environ. Sci., 3, 554, 10.1039/b924978h

Mata, 2010, Microalgae for biodiesel production and other applications: a review, Renew. Sustain. Energ. Rev., 14, 217, 10.1016/j.rser.2009.07.020

Molina, 2001, Tubular photobioreactor design for algal cultures, J. Biotechnol., 92, 113, 10.1016/S0168-1656(01)00353-4

Münkel, 2013, Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella vulgaris, Biotechnol. Bioeng., 110, 2882, 10.1002/bit.24948

Muñoz, 2006, Algal-bacterial processes for the treatment of hazardous contaminants: a review, Water Res., 40, 2799, 10.1016/j.watres.2006.06.011

Norsker, 2011, Microalgal production – a close look at the economics, Biotechnol. Adv., 29, 24, 10.1016/j.biotechadv.2010.08.005

NREL, 0000, Biomass Research – Publications

Pruvost, 2011, Modeling dynamic functioning of rectangular photobioreactors in solar conditions, AIChE J., 57, 1947, 10.1002/aic.12389

Radmann, 2007, Optimization of the repeated batch cultivation of microalga Spirulina platensis in open raceway ponds, Aquaculture, 265, 118, 10.1016/j.aquaculture.2007.02.001

Rawat, 2013, Biodiesel from microalgae: a critical evaluation from laboratory to large scale production, Appl. Energy, 103, 444, 10.1016/j.apenergy.2012.10.004

Robinson, 2004, Solar radiation modelling in the urban context, Solar Energy, 77, 295, 10.1016/j.solener.2004.05.010

Rodolfi, 2009, Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor, Biotechnol. Bioeng., 102, 100, 10.1002/bit.22033

Ruiz, 2013, Performance of a flat panel reactor in the continuous culture of microalgae in urban wastewater: prediction from a batch experiment, Bioresour. Technol., 127, 456, 10.1016/j.biortech.2012.09.103

Sierra, 2008, Characterization of a flat plate photobioreactor for the production of microalgae, Chem. Eng. J., 138, 136, 10.1016/j.cej.2007.06.004

Sills, 2013, Modeling CO2 Requirements for Cultivation of Microalgae in Open Raceway Pond

Singh, 2011, Microalgae as second generation biofuel. A review, Agron. Sustain. Dev., 31, 605, 10.1007/s13593-011-0018-0

Slegers, 2013, Scenario evaluation of open pond microalgae production, Algal. Res., 2, 358, 10.1016/j.biortech.2012.11.123

Slegers, 2011, Design scenarios for flat panel photobioreactors, Appl. Energy, 88, 3342, 10.1016/j.apenergy.2010.12.037

Sompech, 2012, Design of raceway ponds for producing microalgae, Biofuels, 3, 387, 10.4155/bfs.12.39

Stephenson, 2010, Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors, Energy Fuels, 24, 4062, 10.1021/ef1003123

Sugai-Guérios, 2014, Mathematical model of the CO2 solubilisation reaction rates developed for the study of photobioreactors, Can. J. Chem. Eng., 92, 787, 10.1002/cjce.21937

Sukhatme, 1996, Solar Energy: Principles of Thermal Collection and Storage

Yang, 2011, Modeling and evaluation of CO2 supply and utilization in algal ponds, Ind. Eng. Chem. Res., 50, 11181, 10.1021/ie200723w