Dynamic Energy Return on Energy Investment (EROI) and material requirements in scenarios of global transition to renewable energies

Energy Strategy Reviews - Tập 26 - Trang 100399 - 2019
Íñigo Capellán-Pérez1,2, Carlos de Castro3,2, Luis Miguel1,2
1Deparment of Systems Engineering and Automatic Control, Escuela de Ingenierías Industriales, Paseo del Cauce s/n, University of Valladolid, 47011 Valladolid, Spain
2Research Group on Energy, Economy and System Dynamics, Escuela de Ingenierías Industriales, Paseo del Cauce s/n, University of Valladolid, 47011 Valladolid, Spain
3Deparment of Applied Physics, Escuela de Arquitectura, Av Salamanca, 18, University of Valladolid, 47014, Valladolid, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

IPCC, 2014, Climate change 2014: mitigation of climate change

Becker, 2014, Transcending community energy: collective and politically motivated projects in renewable energy (CPE) across Europe, People Place Policy, 8, 180

Capellán-Pérez, 2017, Assessing vulnerabilities and limits in the transition to renewable energies: land requirements under 100% solar energy scenarios, Renew. Sustain. Energy Rev., 77, 760, 10.1016/j.rser.2017.03.137

MacKay, 2013, Solar energy in the context of energy use, energy transportation and energy storage, Philos. Trans. R. Soc. Lond. Math. Phys. Eng. Sci., 371, 20110431

Scheidel, 2012, Energy transitions and the global land rush: ultimate drivers and persistent consequences, Glob. Environ. Change., 22, 588, 10.1016/j.gloenvcha.2011.12.005

Trainer, 2012, A critique of Jacobson and Delucchi's proposals for a world renewable energy supply, Energy Policy, 44, 476, 10.1016/j.enpol.2011.09.037

Wagner, 2014, Considerations for an EU-wide use of renewable energies for electricity generation, Eur. Phys. J. Plus., 129, 1, 10.1140/epjp/i2014-14219-7

Hall, 2017, Will EROI be the primary determinant of our economic future? The view of the natural scientist versus the economist, Joule, 1, 635, 10.1016/j.joule.2017.09.010

Hall, 2014, EROI of different fuels and the implications for society, Energy Policy, 64, 141, 10.1016/j.enpol.2013.05.049

Carbajales-Dale, 2014, A better currency for investing in a sustainable future, Nat. Clim. Change., 4, 524, 10.1038/nclimate2285

Arto, 2016, The energy requirements of a developed world, Energy Sustain. Dev., 33, 1, 10.1016/j.esd.2016.04.001

Cottrell, 2009

White, 1943, Energy and the evolution of culture, Am. Anthropol., 335, 10.1525/aa.1943.45.3.02a00010

Hall, 2018

Barnhart, 2013, The energetic implications of curtailing versus storing solar- and wind-generated electricity, Energy Environ. Sci., 6, 2804, 10.1039/c3ee41973h

Carbajales-Dale, 2014, Can we afford storage? A dynamic net energy analysis of renewable electricity generation supported by energy storage, Energy Environ. Sci., 7, 1538, 10.1039/c3ee42125b

Dale, 2012, Global energy modelling — a biophysical approach (GEMBA) part 1: an overview of biophysical economics, Ecol. Econ., 73, 152, 10.1016/j.ecolecon.2011.10.014

Day, 2018, The energy pillars of society: perverse interactions of human resource use, the economy, and environmental degradation, Biophys. Econ. Resour. Qual., 3, 2, 10.1007/s41247-018-0035-6

Hall, 2009, What is the minimum EROI that a sustainable society must have?, Energies, 2, 25, 10.3390/en20100025

Palmer, 2017, A framework for incorporating EROI into electrical storage, Biophys. Econ. Resour. Qual., 2, 6, 10.1007/s41247-017-0022-3

Sers, 2018, The energy-missions trap, Ecol. Econ, 151, 10, 10.1016/j.ecolecon.2018.04.004

Kessides, 2011, Deriving an improved dynamic EROI to provide better information for energy planners, Sustainability, 3, 2339, 10.3390/su3122339

Zenzey, 2013, Energy as a master resource, 73

Brandt, 2017, How does energy resource depletion affect prosperity? Mathematics of a minimum energy return on investment (EROI), Biophys. Econ. Resour. Qual., 2, 2, 10.1007/s41247-017-0019-y

Bhandari, 2015, Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: a systematic review and meta-analysis, Renew. Sustain. Energy Rev., 47, 133, 10.1016/j.rser.2015.02.057

de Castro, 2014, A top-down approach to assess physical and ecological limits of biofuels, Energy, 64, 506, 10.1016/j.energy.2013.10.049

de Castro, 2018, 3

Kubiszewski, 2010, Meta-analysis of net energy return for wind power systems, Renew. Energy., 35, 218, 10.1016/j.renene.2009.01.012

Price, 2012, Wind power as a case study, J. Ind. Ecol., 16, S22, 10.1111/j.1530-9290.2011.00458.x

Prieto, 2013

Weißbach, 2013, Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants, Energy, 52, 210, 10.1016/j.energy.2013.01.029

Ferroni, 2016, Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation, Energy Policy, 94, 336, 10.1016/j.enpol.2016.03.034

Hall, 2012

Murphy, 2016, Comparing apples to apples: why the net energy analysis community needs to adopt the life-cycle analysis framework, Energies, 9, 917, 10.3390/en9110917

Raugei, 2017, Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: a comprehensive response, Energy Policy, 102, 377, 10.1016/j.enpol.2016.12.042

Brockway, 2019, Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources, Nat. Energy, 4, 10.1038/s41560-019-0425-z

Murphy, 2011, Order from chaos: a preliminary protocol for determining the EROI of fuels, Sustainability, 3, 1888, 10.3390/su3101888

Pillai, 2015, Drivers of cost reduction in solar photovoltaics, Energy Econ., 50, 286, 10.1016/j.eneco.2015.05.015

Clack, 2017, Evaluation of a proposal for reliable low-cost grid power with 100% wind, water, and solar, Proc. Natl. Acad. Sci., 114, 6722, 10.1073/pnas.1610381114

Raugei, 2015, Rebuttal: “Comments on ‘Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants’ – making clear of quite some confusion, Energy, 82, 1088, 10.1016/j.energy.2014.12.060

Calvo, 2016, Decreasing ore grades in global metallic mining: a theoretical issue or a global reality?, Resources, 5, 36, 10.3390/resources5040036

Mudd, 2010, The Environmental sustainability of mining in Australia: key mega-trends and looming constraints, Resour. Policy, 35, 98, 10.1016/j.resourpol.2009.12.001

Capellán-Pérez, 2019, Consistent integration of climate change damages to human societies in integrated assessment modelling, Nat. Climate Change

Dietz, 2015, Endogenous growth, convexity of damage and climate risk: how Nordhaus' framework supports deep cuts in carbon emissions, Econ. J., 125, 574, 10.1111/ecoj.12188

Lambert, 2014, Energy, EROI and quality of life, Energy Policy, 64, 153, 10.1016/j.enpol.2013.07.001

Brand-Correa, 2017, Developing an input-output based method to estimate a national-level energy return on investment (EROI), Energies, 10, 534, 10.3390/en10040534

Court, 2017, Long-term estimates of the energy-return-on-investment (EROI) of coal, oil, and gas global productions, Ecol. Econ., 138, 145, 10.1016/j.ecolecon.2017.03.015

Celi, 2018, A new approach to calculating the “corporate” EROI, Biophys. Econ. Resour. Qual., 3, 15, 10.1007/s41247-018-0048-1

Gagnon, 2009, A preliminary investigation of energy return on energy investment for global oil and gas production, Energies, 2, 490, 10.3390/en20300490

Masnadi, 2017, Energetic productivity dynamics of global super-giant oilfields, Energy Environ. Sci., 10, 1493, 10.1039/C7EE01031A

Trainer, 2018, Estimating the EROI of whole systems for 100% renewable electricity supply capable of dealing with intermittency, Energy Policy, 119, 648, 10.1016/j.enpol.2018.04.045

Lenzen, 2016, Simulating low-carbon electricity supply for Australia, Appl. Energy, 179, 553, 10.1016/j.apenergy.2016.06.151

Limpens, 2018, Electricity storage needs for the energy transition: an EROI based analysis illustrated by the case of Belgium, Energy, 152, 960, 10.1016/j.energy.2018.03.180

Dale, 2012, Global energy modelling — a biophysical approach (GEMBA) Part 2: Methodology, Ecol. Econ., 73, 158, 10.1016/j.ecolecon.2011.10.028

Dale, 2011, A dynamic function for energy return on investment, Sustainability, 3, 1972, 10.3390/su3101972

Neumeyer, 2016, Dynamic EROI assessment of the IPCC 21st century electricity production scenario, Sustainability, 8, 421, 10.3390/su8050421

Rye, 2018, A review of EROEI-dynamics energy-transition models, Energy Policy, 122, 260, 10.1016/j.enpol.2018.06.041

Sgouridis, 2016, The sower's way: quantifying the narrowing net-energy pathways to a global energy transition, Environ. Res. Lett., 11, 10.1088/1748-9326/11/9/094009

King, 2018, Implications of net energy-return-on-investment for a low-carbon energy transition, Nat. Energy, 3, 334, 10.1038/s41560-018-0116-1

IEA, 2017

Capellán-Pérez, 2017

Capellán-Pérez, 2019, MEDEAS: a new modelling framework integrating global biophysical and socioeconomic constraints, Glob. Environ. Change

Smil, 2015

Valero, 2018, Material bottlenecks in the future development of green technologies, Renew. Sustain. Energy Rev., 93, 178, 10.1016/j.rser.2018.05.041

Tokimatsu, 2017, Energy modeling approach to the global energy-mineral nexus: a first look at metal requirements and the 2°C target, Appl. Energy, 207, 494, 10.1016/j.apenergy.2017.05.151

Kleijn, 2011, Metal requirements of low-carbon power generation, Energy, 36, 5640, 10.1016/j.energy.2011.07.003

de Koning, 2018, Metal supply constraints for a low-carbon economy?, Resour. Conserv. Recycl., 129, 202, 10.1016/j.resconrec.2017.10.040

Ali, 2017, others, Mineral supply for sustainable development requires resource governance, Nature, 543, 367, 10.1038/nature21359

UNEP, 2013

IPCC, 2011

Smil, 2010

EC, 2010

Elshkaki, 2013, Dynamic analysis of the global metals flows and stocks in electricity generation technologies, J. Clean. Prod., 59, 260, 10.1016/j.jclepro.2013.07.003

García-Olivares, 2012, A global renewable mix with proven technologies and common materials, Energy Policy, 41, 561, 10.1016/j.enpol.2011.11.018

Prior, 2012, Resource depletion, peak minerals and the implications for sustainable resource management, Glob. Environ. Change., 22, 577, 10.1016/j.gloenvcha.2011.08.009

European Commission, 2011

Jacobs, 2012, Green growth: economic theory and political discourse

OECD, 2018

OECD, 2011

UNEP, 2011

World Bank, 2012

King, 2019

Raugei, 2016, A comprehensive assessment of the energy performance of the full range of electricity generation technologies deployed in the United Kingdom, Energy Policy, 90, 46, 10.1016/j.enpol.2015.12.011

IEA, 2019

Torre-Enciso, 2009, Mutriku wave power plant: from the thinking out to the reality, 319

Hertwich, 2015, Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies, Proc. Natl. Acad. Sci., 112, 6277, 10.1073/pnas.1312753111

Dupont, 2017, Global available wind energy with physical and energy return on investment constraints, Appl. Energy

Moriarty, 2015, Assessing global renewable energy forecasts, Energy Procedia, 75, 2523, 10.1016/j.egypro.2015.07.256

Valero, 2016

Dale, 2013, A comparative analysis of energy costs of photovoltaic, solar thermal, and wind electricity generation technologies, Appl. Sci., 3, 325, 10.3390/app3020325

Pihl, 2012, Material constraints for concentrating solar thermal power, Energy, 44, 944, 10.1016/j.energy.2012.04.057

UNEP, 2011

de Castro, 2013, Global solar electric potential: a review of their technical and sustainable limits, Renew. Sustain. Energy Rev., 28, 824, 10.1016/j.rser.2013.08.040

Frischknecht, 2015

Alsema, 2005, Environmental impacts of crystalline silicon photovoltaic module production, 73

Latunussa, 2016, Life Cycle Assessment of an innovative recycling process for crystalline silicon photovoltaic panels, Sol. Energy Mater. Sol. Cells., 156, 101, 10.1016/j.solmat.2016.03.020

GWEC, 2017

GAMESA, 2013

LondonArray, 2016

SMart Wind, 2013

Barnhart, 2013, On the importance of reducing the energetic and material demands of electrical energy storage, Energy Environ. Sci., 6, 1083, 10.1039/c3ee24040a

ALIVE, 2016

Dunn, 2012, Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries, Environ. Sci. Technol., 46, 12704, 10.1021/es302420z

Li, 2013

Hammond, 2011

Harmsen, 2013, The impact of copper scarcity on the efficiency of 2050 global renewable energy scenarios, Energy, 50, 62, 10.1016/j.energy.2012.12.006

Nieto, 2019

Dietzenbacher, 2013, The construction of world input–output tables in the wiod project, Econ. Syst. Res., 25, 71, 10.1080/09535314.2012.761180

IEA, 2017

IEA ETP, 2017

SSP db

van Vuuren, 2017, Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm, Glob. Environ. Change, 42, 237, 10.1016/j.gloenvcha.2016.05.008

Kc, 2017, The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100, Glob. Environ. Change, 42, 181, 10.1016/j.gloenvcha.2014.06.004

O'Neill, 2017, The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century, Glob. Environ. Change, 42, 169, 10.1016/j.gloenvcha.2015.01.004

Nilsson, 1995, The carbon-sequestration potential of a global afforestation program, Clim. Change, 30, 267, 10.1007/BF01091928

Månberger, 2018, Global metal flows in the renewable energy transition: exploring the effects of substitutes, technological mix and development, Energy Policy, 119, 226, 10.1016/j.enpol.2018.04.056

Grandell, 2016, Role of critical metals in the future markets of clean energy technologies, Renew. Energy, 95, 53, 10.1016/j.renene.2016.03.102

Ragnarsdóttir, 2012, Assessing long term sustainability of global supply of natural resources and materials

Schneider, 2017

IEA, 2017

IEA, 2016

García-Olivares, 2018, Transportation in a 100% renewable energy system, Energy Convers. Manag., 158, 266, 10.1016/j.enconman.2017.12.053

Laherrère, 2013

Mohr, 2015, Projection of world fossil fuels by country, Fuel, 141, 120, 10.1016/j.fuel.2014.10.030

EWG, 2013

Tainter, 1990

Fizaine, 2016, Energy expenditure, economic growth, and the minimum EROI of society, Energy Policy, 95, 172, 10.1016/j.enpol.2016.04.039

IPCC, 2001

Smith, 2009, Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) “reasons for concern, Proc. Natl. Acad. Sci., 106, 4133, 10.1073/pnas.0812355106

Capellán-Pérez, 2014, Fossil fuel depletion and socio-economic scenarios: an integrated approach, Energy, 77, 641, 10.1016/j.energy.2014.09.063

van Vuuren, 2012, Scenarios in global environmental assessments: key characteristics and lessons for future use, Glob. Environ. Change, 22, 884, 10.1016/j.gloenvcha.2012.06.001

Mohr, 2012, Lithium resources and production: critical assessment and global projections, Minerals, 2, 65, 10.3390/min2010065

Northey, 2014, Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining, Resour. Conserv. Recycl., 83, 190, 10.1016/j.resconrec.2013.10.005

Sverdrup, 2014, Natural resources in a planetary perspective, Geochem. Perspect., 3

Bardi, 2014

Bardi, 2007, Peak minerals, Oil Drum, 15

Valero, 2010, Physical geonomics: Combining the exergy and Hubbert peak analysis for predicting mineral resources depletion, Resour. Conserv. Recycl., 1074, 10.1016/j.resconrec.2010.02.010

USGS, 2015

Emsley, 2001

Frenzel, 2016, On the current and future availability of gallium, Resour. Policy, 47, 38, 10.1016/j.resourpol.2015.11.005

Frenzel, 2014, On the geological availability of germanium, Miner. Deposita, 49, 471, 10.1007/s00126-013-0506-z

MEDEAS, 2016

Exner, 2013

Calvo, 2017, Assessing maximum production peak and resource availability of non-fuel mineral resources: analyzing the influence of extractable global resources, Resour. Conserv. Recycl., 125, 208, 10.1016/j.resconrec.2017.06.009

Apergis, 2019, Silver prices and solar energy production, Environ. Sci. Pollut. Res., 26, 8525, 10.1007/s11356-019-04357-1

Conde, 2017, Resistance to mining. A review, Ecol. Econ., 132, 80, 10.1016/j.ecolecon.2016.08.025

UNEP, 2013

Spiegel, 2015, Contested diamond certification: reconfiguring global and national interests in Zimbabwe's marange fields, vol. II, 153

Childs, 2014, From ‘criminals of the earth’ to ‘stewards of the environment’: the social and environmental justice of Fair Trade gold, Geoforum, 57, 129, 10.1016/j.geoforum.2014.08.016

Hilson, 2014, ‘Constructing’ ethical mineral supply chains in sub-Saharan Africa: the case of Malawian fair trade rubies, Dev. Change, 45, 53, 10.1111/dech.12069

Demaria, 2013, What is degrowth? From an activist slogan to a social movement, Environ. Values, 22, 191, 10.3197/096327113X13581561725194

2012

Gotzens, 2018, The influence of continued reductions in renewable energy cost on the European electricity system, Energy Strategy Rev., 21, 71, 10.1016/j.esr.2018.04.007

Jacobson, 2015, 100% clean and renewable wind, water, and sunlight (WWS) all-sector energy roadmaps for the 50 United States, Energy Environ. Sci., 8, 2093, 10.1039/C5EE01283J

NREL, 2012

Palmer, 2018, A biophysical perspective of IPCC integrated energy modelling, Energies, 11, 839, 10.3390/en11040839

Deng, 2012, Transition to a fully sustainable global energy system, Energy Strategy Rev., 1, 109, 10.1016/j.esr.2012.07.003

Greenpeace, 2015

García-Olivares, 2016, Energy for a sustainable post-carbon society, Sci. Mar., 80, 257, 10.3989/scimar.04295.12A

Miller, 2018, Climatic impacts of wind power, Joule, 2, 2618, 10.1016/j.joule.2018.09.009

Van de Ven, 2019, The potential land use requirements and related land use change emissions of solar energy, Nat. Sustain.

Dietzenbacher, 2013, The construction of world input–output tables in the wiod project, Econ. Syst. Res., 25, 71, 10.1080/09535314.2012.761180

Genty, 2012

Campbell, 1998, The end of cheap oil, Sci. Am., 278, 60, 10.1038/scientificamerican0398-78

Kerschner, 2017, Peak-oil and ecological economics, 425

van Vuuren, 2011, The representative concentration pathways: an overview, Clim. Change, 109, 5, 10.1007/s10584-011-0148-z

Fiddaman, 2017, vol. 78b

Sterman, 2012, Climate interactive: the C-ROADS climate policy model, Syst. Dyn. Rev., 28, 295, 10.1002/sdr.1474

Haas, 2015, How circular is the global economy?: an assessment of material flows, waste production, and recycling in the European Union and the world in 2005, J. Ind. Ecol., 10.1111/jiec.12244

Krausmann, 2009, Growth in global materials use, GDP and population during the 20th century, Ecol. Econ., 68, 2696, 10.1016/j.ecolecon.2009.05.007

World Bank database

USGS