Dynamic Energy Return on Energy Investment (EROI) and material requirements in scenarios of global transition to renewable energies
Tóm tắt
Từ khóa
Tài liệu tham khảo
IPCC, 2014, Climate change 2014: mitigation of climate change
Becker, 2014, Transcending community energy: collective and politically motivated projects in renewable energy (CPE) across Europe, People Place Policy, 8, 180
Capellán-Pérez, 2017, Assessing vulnerabilities and limits in the transition to renewable energies: land requirements under 100% solar energy scenarios, Renew. Sustain. Energy Rev., 77, 760, 10.1016/j.rser.2017.03.137
MacKay, 2013, Solar energy in the context of energy use, energy transportation and energy storage, Philos. Trans. R. Soc. Lond. Math. Phys. Eng. Sci., 371, 20110431
Scheidel, 2012, Energy transitions and the global land rush: ultimate drivers and persistent consequences, Glob. Environ. Change., 22, 588, 10.1016/j.gloenvcha.2011.12.005
Trainer, 2012, A critique of Jacobson and Delucchi's proposals for a world renewable energy supply, Energy Policy, 44, 476, 10.1016/j.enpol.2011.09.037
Wagner, 2014, Considerations for an EU-wide use of renewable energies for electricity generation, Eur. Phys. J. Plus., 129, 1, 10.1140/epjp/i2014-14219-7
Hall, 2017, Will EROI be the primary determinant of our economic future? The view of the natural scientist versus the economist, Joule, 1, 635, 10.1016/j.joule.2017.09.010
Hall, 2014, EROI of different fuels and the implications for society, Energy Policy, 64, 141, 10.1016/j.enpol.2013.05.049
Carbajales-Dale, 2014, A better currency for investing in a sustainable future, Nat. Clim. Change., 4, 524, 10.1038/nclimate2285
Arto, 2016, The energy requirements of a developed world, Energy Sustain. Dev., 33, 1, 10.1016/j.esd.2016.04.001
Cottrell, 2009
White, 1943, Energy and the evolution of culture, Am. Anthropol., 335, 10.1525/aa.1943.45.3.02a00010
Hall, 2018
Barnhart, 2013, The energetic implications of curtailing versus storing solar- and wind-generated electricity, Energy Environ. Sci., 6, 2804, 10.1039/c3ee41973h
Carbajales-Dale, 2014, Can we afford storage? A dynamic net energy analysis of renewable electricity generation supported by energy storage, Energy Environ. Sci., 7, 1538, 10.1039/c3ee42125b
Dale, 2012, Global energy modelling — a biophysical approach (GEMBA) part 1: an overview of biophysical economics, Ecol. Econ., 73, 152, 10.1016/j.ecolecon.2011.10.014
Day, 2018, The energy pillars of society: perverse interactions of human resource use, the economy, and environmental degradation, Biophys. Econ. Resour. Qual., 3, 2, 10.1007/s41247-018-0035-6
Hall, 2009, What is the minimum EROI that a sustainable society must have?, Energies, 2, 25, 10.3390/en20100025
Palmer, 2017, A framework for incorporating EROI into electrical storage, Biophys. Econ. Resour. Qual., 2, 6, 10.1007/s41247-017-0022-3
Kessides, 2011, Deriving an improved dynamic EROI to provide better information for energy planners, Sustainability, 3, 2339, 10.3390/su3122339
Zenzey, 2013, Energy as a master resource, 73
Brandt, 2017, How does energy resource depletion affect prosperity? Mathematics of a minimum energy return on investment (EROI), Biophys. Econ. Resour. Qual., 2, 2, 10.1007/s41247-017-0019-y
Bhandari, 2015, Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: a systematic review and meta-analysis, Renew. Sustain. Energy Rev., 47, 133, 10.1016/j.rser.2015.02.057
de Castro, 2014, A top-down approach to assess physical and ecological limits of biofuels, Energy, 64, 506, 10.1016/j.energy.2013.10.049
de Castro, 2018, 3
Kubiszewski, 2010, Meta-analysis of net energy return for wind power systems, Renew. Energy., 35, 218, 10.1016/j.renene.2009.01.012
Prieto, 2013
Weißbach, 2013, Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants, Energy, 52, 210, 10.1016/j.energy.2013.01.029
Ferroni, 2016, Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation, Energy Policy, 94, 336, 10.1016/j.enpol.2016.03.034
Hall, 2012
Murphy, 2016, Comparing apples to apples: why the net energy analysis community needs to adopt the life-cycle analysis framework, Energies, 9, 917, 10.3390/en9110917
Raugei, 2017, Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: a comprehensive response, Energy Policy, 102, 377, 10.1016/j.enpol.2016.12.042
Brockway, 2019, Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources, Nat. Energy, 4, 10.1038/s41560-019-0425-z
Murphy, 2011, Order from chaos: a preliminary protocol for determining the EROI of fuels, Sustainability, 3, 1888, 10.3390/su3101888
Pillai, 2015, Drivers of cost reduction in solar photovoltaics, Energy Econ., 50, 286, 10.1016/j.eneco.2015.05.015
Clack, 2017, Evaluation of a proposal for reliable low-cost grid power with 100% wind, water, and solar, Proc. Natl. Acad. Sci., 114, 6722, 10.1073/pnas.1610381114
Raugei, 2015, Rebuttal: “Comments on ‘Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants’ – making clear of quite some confusion, Energy, 82, 1088, 10.1016/j.energy.2014.12.060
Calvo, 2016, Decreasing ore grades in global metallic mining: a theoretical issue or a global reality?, Resources, 5, 36, 10.3390/resources5040036
Mudd, 2010, The Environmental sustainability of mining in Australia: key mega-trends and looming constraints, Resour. Policy, 35, 98, 10.1016/j.resourpol.2009.12.001
Capellán-Pérez, 2019, Consistent integration of climate change damages to human societies in integrated assessment modelling, Nat. Climate Change
Dietz, 2015, Endogenous growth, convexity of damage and climate risk: how Nordhaus' framework supports deep cuts in carbon emissions, Econ. J., 125, 574, 10.1111/ecoj.12188
Lambert, 2014, Energy, EROI and quality of life, Energy Policy, 64, 153, 10.1016/j.enpol.2013.07.001
Brand-Correa, 2017, Developing an input-output based method to estimate a national-level energy return on investment (EROI), Energies, 10, 534, 10.3390/en10040534
Court, 2017, Long-term estimates of the energy-return-on-investment (EROI) of coal, oil, and gas global productions, Ecol. Econ., 138, 145, 10.1016/j.ecolecon.2017.03.015
Celi, 2018, A new approach to calculating the “corporate” EROI, Biophys. Econ. Resour. Qual., 3, 15, 10.1007/s41247-018-0048-1
Gagnon, 2009, A preliminary investigation of energy return on energy investment for global oil and gas production, Energies, 2, 490, 10.3390/en20300490
Masnadi, 2017, Energetic productivity dynamics of global super-giant oilfields, Energy Environ. Sci., 10, 1493, 10.1039/C7EE01031A
Trainer, 2018, Estimating the EROI of whole systems for 100% renewable electricity supply capable of dealing with intermittency, Energy Policy, 119, 648, 10.1016/j.enpol.2018.04.045
Lenzen, 2016, Simulating low-carbon electricity supply for Australia, Appl. Energy, 179, 553, 10.1016/j.apenergy.2016.06.151
Limpens, 2018, Electricity storage needs for the energy transition: an EROI based analysis illustrated by the case of Belgium, Energy, 152, 960, 10.1016/j.energy.2018.03.180
Dale, 2012, Global energy modelling — a biophysical approach (GEMBA) Part 2: Methodology, Ecol. Econ., 73, 158, 10.1016/j.ecolecon.2011.10.028
Dale, 2011, A dynamic function for energy return on investment, Sustainability, 3, 1972, 10.3390/su3101972
Neumeyer, 2016, Dynamic EROI assessment of the IPCC 21st century electricity production scenario, Sustainability, 8, 421, 10.3390/su8050421
Rye, 2018, A review of EROEI-dynamics energy-transition models, Energy Policy, 122, 260, 10.1016/j.enpol.2018.06.041
Sgouridis, 2016, The sower's way: quantifying the narrowing net-energy pathways to a global energy transition, Environ. Res. Lett., 11, 10.1088/1748-9326/11/9/094009
King, 2018, Implications of net energy-return-on-investment for a low-carbon energy transition, Nat. Energy, 3, 334, 10.1038/s41560-018-0116-1
IEA, 2017
Capellán-Pérez, 2017
Capellán-Pérez, 2019, MEDEAS: a new modelling framework integrating global biophysical and socioeconomic constraints, Glob. Environ. Change
Smil, 2015
Valero, 2018, Material bottlenecks in the future development of green technologies, Renew. Sustain. Energy Rev., 93, 178, 10.1016/j.rser.2018.05.041
Tokimatsu, 2017, Energy modeling approach to the global energy-mineral nexus: a first look at metal requirements and the 2°C target, Appl. Energy, 207, 494, 10.1016/j.apenergy.2017.05.151
Kleijn, 2011, Metal requirements of low-carbon power generation, Energy, 36, 5640, 10.1016/j.energy.2011.07.003
de Koning, 2018, Metal supply constraints for a low-carbon economy?, Resour. Conserv. Recycl., 129, 202, 10.1016/j.resconrec.2017.10.040
Ali, 2017, others, Mineral supply for sustainable development requires resource governance, Nature, 543, 367, 10.1038/nature21359
UNEP, 2013
IPCC, 2011
Smil, 2010
EC, 2010
Elshkaki, 2013, Dynamic analysis of the global metals flows and stocks in electricity generation technologies, J. Clean. Prod., 59, 260, 10.1016/j.jclepro.2013.07.003
García-Olivares, 2012, A global renewable mix with proven technologies and common materials, Energy Policy, 41, 561, 10.1016/j.enpol.2011.11.018
Prior, 2012, Resource depletion, peak minerals and the implications for sustainable resource management, Glob. Environ. Change., 22, 577, 10.1016/j.gloenvcha.2011.08.009
European Commission, 2011
Jacobs, 2012, Green growth: economic theory and political discourse
OECD, 2018
OECD, 2011
UNEP, 2011
World Bank, 2012
King, 2019
Raugei, 2016, A comprehensive assessment of the energy performance of the full range of electricity generation technologies deployed in the United Kingdom, Energy Policy, 90, 46, 10.1016/j.enpol.2015.12.011
IEA, 2019
Torre-Enciso, 2009, Mutriku wave power plant: from the thinking out to the reality, 319
Hertwich, 2015, Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies, Proc. Natl. Acad. Sci., 112, 6277, 10.1073/pnas.1312753111
Dupont, 2017, Global available wind energy with physical and energy return on investment constraints, Appl. Energy
Moriarty, 2015, Assessing global renewable energy forecasts, Energy Procedia, 75, 2523, 10.1016/j.egypro.2015.07.256
Valero, 2016
Dale, 2013, A comparative analysis of energy costs of photovoltaic, solar thermal, and wind electricity generation technologies, Appl. Sci., 3, 325, 10.3390/app3020325
Pihl, 2012, Material constraints for concentrating solar thermal power, Energy, 44, 944, 10.1016/j.energy.2012.04.057
UNEP, 2011
de Castro, 2013, Global solar electric potential: a review of their technical and sustainable limits, Renew. Sustain. Energy Rev., 28, 824, 10.1016/j.rser.2013.08.040
Frischknecht, 2015
Alsema, 2005, Environmental impacts of crystalline silicon photovoltaic module production, 73
Latunussa, 2016, Life Cycle Assessment of an innovative recycling process for crystalline silicon photovoltaic panels, Sol. Energy Mater. Sol. Cells., 156, 101, 10.1016/j.solmat.2016.03.020
GWEC, 2017
GAMESA, 2013
LondonArray, 2016
SMart Wind, 2013
Barnhart, 2013, On the importance of reducing the energetic and material demands of electrical energy storage, Energy Environ. Sci., 6, 1083, 10.1039/c3ee24040a
ALIVE, 2016
Dunn, 2012, Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries, Environ. Sci. Technol., 46, 12704, 10.1021/es302420z
Li, 2013
Hammond, 2011
Harmsen, 2013, The impact of copper scarcity on the efficiency of 2050 global renewable energy scenarios, Energy, 50, 62, 10.1016/j.energy.2012.12.006
Nieto, 2019
Dietzenbacher, 2013, The construction of world input–output tables in the wiod project, Econ. Syst. Res., 25, 71, 10.1080/09535314.2012.761180
IEA, 2017
IEA ETP, 2017
SSP db
van Vuuren, 2017, Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm, Glob. Environ. Change, 42, 237, 10.1016/j.gloenvcha.2016.05.008
Kc, 2017, The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100, Glob. Environ. Change, 42, 181, 10.1016/j.gloenvcha.2014.06.004
O'Neill, 2017, The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century, Glob. Environ. Change, 42, 169, 10.1016/j.gloenvcha.2015.01.004
Nilsson, 1995, The carbon-sequestration potential of a global afforestation program, Clim. Change, 30, 267, 10.1007/BF01091928
Månberger, 2018, Global metal flows in the renewable energy transition: exploring the effects of substitutes, technological mix and development, Energy Policy, 119, 226, 10.1016/j.enpol.2018.04.056
Grandell, 2016, Role of critical metals in the future markets of clean energy technologies, Renew. Energy, 95, 53, 10.1016/j.renene.2016.03.102
Ragnarsdóttir, 2012, Assessing long term sustainability of global supply of natural resources and materials
Schneider, 2017
IEA, 2017
IEA, 2016
García-Olivares, 2018, Transportation in a 100% renewable energy system, Energy Convers. Manag., 158, 266, 10.1016/j.enconman.2017.12.053
Laherrère, 2013
EWG, 2013
Tainter, 1990
Fizaine, 2016, Energy expenditure, economic growth, and the minimum EROI of society, Energy Policy, 95, 172, 10.1016/j.enpol.2016.04.039
IPCC, 2001
Smith, 2009, Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) “reasons for concern, Proc. Natl. Acad. Sci., 106, 4133, 10.1073/pnas.0812355106
Capellán-Pérez, 2014, Fossil fuel depletion and socio-economic scenarios: an integrated approach, Energy, 77, 641, 10.1016/j.energy.2014.09.063
van Vuuren, 2012, Scenarios in global environmental assessments: key characteristics and lessons for future use, Glob. Environ. Change, 22, 884, 10.1016/j.gloenvcha.2012.06.001
Mohr, 2012, Lithium resources and production: critical assessment and global projections, Minerals, 2, 65, 10.3390/min2010065
Northey, 2014, Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining, Resour. Conserv. Recycl., 83, 190, 10.1016/j.resconrec.2013.10.005
Sverdrup, 2014, Natural resources in a planetary perspective, Geochem. Perspect., 3
Bardi, 2014
Bardi, 2007, Peak minerals, Oil Drum, 15
Valero, 2010, Physical geonomics: Combining the exergy and Hubbert peak analysis for predicting mineral resources depletion, Resour. Conserv. Recycl., 1074, 10.1016/j.resconrec.2010.02.010
USGS, 2015
Emsley, 2001
Frenzel, 2016, On the current and future availability of gallium, Resour. Policy, 47, 38, 10.1016/j.resourpol.2015.11.005
Frenzel, 2014, On the geological availability of germanium, Miner. Deposita, 49, 471, 10.1007/s00126-013-0506-z
MEDEAS, 2016
Exner, 2013
Calvo, 2017, Assessing maximum production peak and resource availability of non-fuel mineral resources: analyzing the influence of extractable global resources, Resour. Conserv. Recycl., 125, 208, 10.1016/j.resconrec.2017.06.009
Apergis, 2019, Silver prices and solar energy production, Environ. Sci. Pollut. Res., 26, 8525, 10.1007/s11356-019-04357-1
UNEP, 2013
Spiegel, 2015, Contested diamond certification: reconfiguring global and national interests in Zimbabwe's marange fields, vol. II, 153
Childs, 2014, From ‘criminals of the earth’ to ‘stewards of the environment’: the social and environmental justice of Fair Trade gold, Geoforum, 57, 129, 10.1016/j.geoforum.2014.08.016
Hilson, 2014, ‘Constructing’ ethical mineral supply chains in sub-Saharan Africa: the case of Malawian fair trade rubies, Dev. Change, 45, 53, 10.1111/dech.12069
Demaria, 2013, What is degrowth? From an activist slogan to a social movement, Environ. Values, 22, 191, 10.3197/096327113X13581561725194
2012
Gotzens, 2018, The influence of continued reductions in renewable energy cost on the European electricity system, Energy Strategy Rev., 21, 71, 10.1016/j.esr.2018.04.007
Jacobson, 2015, 100% clean and renewable wind, water, and sunlight (WWS) all-sector energy roadmaps for the 50 United States, Energy Environ. Sci., 8, 2093, 10.1039/C5EE01283J
NREL, 2012
Palmer, 2018, A biophysical perspective of IPCC integrated energy modelling, Energies, 11, 839, 10.3390/en11040839
Deng, 2012, Transition to a fully sustainable global energy system, Energy Strategy Rev., 1, 109, 10.1016/j.esr.2012.07.003
Greenpeace, 2015
García-Olivares, 2016, Energy for a sustainable post-carbon society, Sci. Mar., 80, 257, 10.3989/scimar.04295.12A
Van de Ven, 2019, The potential land use requirements and related land use change emissions of solar energy, Nat. Sustain.
Dietzenbacher, 2013, The construction of world input–output tables in the wiod project, Econ. Syst. Res., 25, 71, 10.1080/09535314.2012.761180
Genty, 2012
Kerschner, 2017, Peak-oil and ecological economics, 425
van Vuuren, 2011, The representative concentration pathways: an overview, Clim. Change, 109, 5, 10.1007/s10584-011-0148-z
Fiddaman, 2017, vol. 78b
Sterman, 2012, Climate interactive: the C-ROADS climate policy model, Syst. Dyn. Rev., 28, 295, 10.1002/sdr.1474
Haas, 2015, How circular is the global economy?: an assessment of material flows, waste production, and recycling in the European Union and the world in 2005, J. Ind. Ecol., 10.1111/jiec.12244
Krausmann, 2009, Growth in global materials use, GDP and population during the 20th century, Ecol. Econ., 68, 2696, 10.1016/j.ecolecon.2009.05.007
World Bank database
USGS