Dynamic Bone Imaging with99mTc-Labeled Diphosphonates and18F-NaF: Mechanisms and Applications

Journal of Nuclear Medicine - Tập 54 Số 4 - Trang 590-599 - 2013
Ka Kit Wong1,2, Morand Piert2
1Nuclear Medicine Service, Department of Veterans Affairs Health System, Ann Arbor, Michigan
2Nuclear Medicine/Radiology Department, University of Michigan Hospital, Ann Arbor, Michigan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Blau, 1962, Fluorine-18: a new isotope for bone scanning, J Nucl Med., 3, 332

10.1097/00004728-199301000-00005

10.1053/snuc.2001.18742

10.2967/jnumed.110.077933

10.2967/jnumed.106.037200

10.2967/jnumed.110.082263

10.1196/annals.1346.039

Einhorn TA . The bone organ system: form and function. In: Marcus R, Feldman D, Kelsey J, eds. Osteoporosis. San Diego, California: Academic Press; 1996:3–22.

10.1053/j.semnuclmed.2011.07.005

10.1053/j.semnuclmed.2009.05.001

10.1359/jbmr.1998.13.8.1328

Renkin, 1959, Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles, Am J Physiol., 197, 1205, 10.1152/ajplegacy.1959.197.6.1205

Hughes, 1977, Bone extraction and blood clearance of diphosphonate in the dog, Am J Physiol., 232, H341

Fogelman, 1980, Skeletal uptake of diphosphonate: a review, Eur J Nucl Med., 5, 473, 10.1007/BF00252034

10.1007/BF02405085

Heinonen I Kemppainen J Kaskinoro K . Bone blood flow and metabolism in humans: effect of muscular exercise and other physiological perturbations. J Bone Miner Res. December 21, 2012 [Epub ahead of print].

Herscovitch, 1987, Positron emission tomographic measurement of cerebral blood flow and permeability-surface area product of water using [15O]water and [11C]butanol, J Cereb Blood Flow Metab., 7, 527, 10.1038/jcbfm.1987.102

Piert, 2001, Assessment of porcine bone metabolism by dynamic [18F]fluoride ion PET: correlation with bone histomorphometry, J Nucl Med., 42, 1091

Francis, 1980, Comparative evaluation of three diphosphonates: in vitro adsorption (C-14 labeled) and in vivo osteogenic uptake (Tc-99m complexed), J Nucl Med., 21, 1185

10.1002/jor.1100040206

Christensen, 1981, Localization of Tc-99m MDP in epiphyseal growth plates of rats, J Nucl Med., 22, 237

Grynpas, 1990, Fluoride effects on bone crystals, J Bone Miner Res., 5, S169

10.1210/jc.77.4.949

10.2967/jnumed.109.063263

10.1016/8756-3282(95)00445-9

Hyldstrup, 1987, Studies on diphosphonate kinetics. Part I: evaluation of plasma elimination curves during 24 h, Eur J Nucl Med., 12, 581, 10.1007/BF00284529

Okamoto, 1997, Mechanism of accumulation of 99mTc-MDP to bone: correlation of in vivo data with in vitro data, Radiat Med., 15, 209

10.1016/S1079-2104(95)80027-1

Moore, 2006, Validation of a blood-sampling method for the measurement of 99mTc-methylene diphosphonate skeletal plasma clearance, J Nucl Med., 47, 581

Hawkins, 1992, Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET, J Nucl Med., 33, 633

10.1359/JBMR.040818

10.1097/MNM.0b013e3283512adb

10.1007/s002590050474

10.1097/MNM.0b013e3283550275

Brenner, 2004, Comparison of different quantitative approaches to 18F-fluoride PET scans, J Nucl Med., 45, 1493

10.1053/j.semnuclmed.2007.06.001

10.1007/s00256-011-1304-2

10.1007/BF02985619

10.1097/00003072-200103000-00009

10.1097/00006231-199906000-00005

10.1007/s002590000334

10.1097/scs.0b013e3180f61198

Brenner, 2004, Assessment of the metabolic activity of bone grafts with 18F-fluoride PET, Eur J Nucl Med Mol Imaging., 31, 1291, 10.1007/s00259-004-1568-z

10.1016/S0901-5027(99)80081-2

Berding, 2001, Assessment of the incorporation of revascularized fibula grafts used for mandibular reconstruction with F-18-PET, Nuklearmedizin., 40, 51, 10.1055/s-0038-1623992

Goldberg VM . Selection of bone grafts for revision total hip arthroplasty. Clin Orthop Relat Res. 2000;68–76.

10.1007/s002590050429

10.1007/s11307-008-0153-4

10.1080/00016470310018126

10.1007/s10561-005-1089-4

10.1007/s11999-008-0219-2

10.1007/s004020050332

10.3109/17453674.2011.641108

10.1200/JCO.2005.03.0841

10.2217/fon.11.112

10.1016/j.acra.2011.10.018

10.1007/s12149-010-0363-0

10.1007/s00259-012-2195-8

10.1007/s00259-009-1181-2

10.1097/RLU.0b013e318252d829

10.1007/s00259-008-0788-z

10.1093/annonc/mds353

10.1200/JCO.2011.36.5791

10.1097/MNM.0b013e3283503ebf

10.1200/JCO.2012.45.0494

10.2967/jnumed.109.070052

Cook GJ Parker C Chua S Johnson B Aksnes AK Lewington VJ . 18F-fluoride PET: changes in uptake as a method to assess response in bone metastases from castrate-resistant prostate cancer patients treated with 223Ra-chloride (Alpharadin). EJNMMI Res 2011;1:4.

10.1097/00006231-200110000-00003

10.1097/00006231-199307000-00009

Israel, 1991, In vivo SPECT quantitation of bone metabolism in hyperparathyroidism and thyrotoxicosis, J Nucl Med., 32, 1157

10.1359/jbmr.2002.17.5.854

10.1007/s00259-010-1655-2

10.1007/s00259-002-0797-2

Piert, 2003, Increased sensitivity in detection of a porcine high-turnover osteopenia after total gastrectomy by dynamic 18F-fluoride ion PET and quantitative CT, J Nucl Med., 44, 117

Schiepers, 1997, Fluoride kinetics of the axial skeleton measured in vivo with fluorine-18-fluoride PET, J Nucl Med., 38, 1970

10.1007/s00256-011-1318-9

10.1056/NEJMoa053569

Peris, 2007, Treatment with tiludronate has a similar effect to risedronate on Paget’s disease activity assessed by bone markers and bone scintigraphy, Clin Exp Rheumatol., 25, 206

Installé, 2005, 18F-fluoride PET for monitoring therapeutic response in Paget’s disease of bone, J Nucl Med., 46, 1650

10.2967/jnumed.109.062570