Dye-sensitized solar cells under ambient light powering machine learning: towards autonomous smart sensors for the internet of things

Chemical Science - Tập 11 Số 11 - Trang 2895-2906
Hannes Michaels1,2,3,4,5, Michael Rinderle6,7,8,9, Richard Freitag10,11,3,4, Iacopo Benesperi1,2,3,4,5, Tomas Edvinsson12,13,3,4,5, Richard Socher14,15, Alessio Gagliardi6,7,8,9, Marina Freitag1,2,16,3,5
1Department of Chemistry
2SE-75120 Uppsala
3Sweden
4 Uppsala University
5Ångström Laboratory
680333 Munich
7Department of electrical and computer engineering
8Germany
9Technical University of Munich
10IT-Division
11SE-75105 Uppsala
12Department of Solid-state Physics
13SE-75121 Uppsala
14Palo Alto
15Salesforce Research, 172 University Avenue, Palo Alto, CA 94301, USA
16School of Natural and Environmental Science, Bedson Building, Newcastle University, NE1 7RU Newcastle upon Tyne, UK

Tóm tắt

Indoor light harvesters enable machine learning on fully autonomous IoT devices at 2.72 × 1015 photons per inference.

Từ khóa


Tài liệu tham khảo

Gubbi, 2013, Future Gener. Comput. Syst., 29, 1645, 10.1016/j.future.2013.01.010

Mohammadi, 2018, IEEE Commun. Mag., 56, 94, 10.1109/MCOM.2018.1700298

Liouane, 2018, Appl. Intell., 48, 2017, 10.1007/s10489-017-1062-5

A. Jukan and M.Chamania , in Advanced Photonics 2017 (IPR, NOMA, Sensors, Networks, SPPCom, PS) , OSA , Washington, D.C. , 2017 , p. NeM2B.4

A. Nicosia , D.Pau , D.Giacalone , E.Plebani , A.Bosco and A.Iacchetti , 2018 IEEE Int. Conf. Consum. Electron. , 2018-Jan , pp. 1–4

C. Bergonzini , D.Brunelli and L.Benini 3rd , Int. Work. Adv. Sensors Interfaces, IWASI , 2009 , vol. 2009 , pp. 144–149

Mathews, 2016, IEEE J. Photovolt., 6, 230, 10.1109/JPHOTOV.2015.2487825

Lee, 2019, Sol. RRL, 3, 1800207, 10.1002/solr.201800207

Lee, 2018, J. Mater. Chem. A, 6, 5618, 10.1039/C7TA10875C

Yin, 2018, J. Mater. Chem. C, 6, 9111, 10.1039/C8TC02838A

Yin, 2018, J. Mater. Chem. A, 6, 8579, 10.1039/C8TA01728J

Dagar, 2018, Nano Energy, 49, 290, 10.1016/j.nanoen.2018.04.027

Mathews, 2019, Adv. Funct. Mater., 29, 1904072, 10.1002/adfm.201904072

Mathews, 2019, Joule, 3, 1415, 10.1016/j.joule.2019.03.026

Müller, 2013, IEEE J. Photovolt., 3, 59, 10.1109/JPHOTOV.2012.2225023

Teran, 2015, IEEE Trans. Electron Devices, 62, 2170, 10.1109/TED.2015.2434336

Li, 2015, Sol. Energy, 111, 21, 10.1016/j.solener.2014.10.024

Chen, 2019, Adv. Opt. Mater., 7, 1

Reese, 2011, Sol. Energy Mater. Sol. Cells, 95, 1253, 10.1016/j.solmat.2011.01.036

Freitag, 2017, Nat. Photonics, 11, 372, 10.1038/nphoton.2017.60

Cao, 2018, Joule, 2, 1108, 10.1016/j.joule.2018.03.017

De Rossi, 2015, Appl. Energy, 156, 413, 10.1016/j.apenergy.2015.07.031

Minnaert, 2014, Energies, 7, 1500, 10.3390/en7031500

Freitag, 2015, Energy Environ. Sci., 8, 2634, 10.1039/C5EE01204J

Zhang, 2018, Energy Environ. Sci., 11, 1779, 10.1039/C8EE00661J

Kakiage, 2015, Chem. Commun., 51, 15894, 10.1039/C5CC06759F

Haight, 2016, Science, 353, 124, 10.1126/science.aag0476

E. Olivetti , J.Gregory and R.Kirchain , Life cycle impacts of alkaline batteries with afocus on end-of-life , Massachusetts Institute of Technology, Materials Systems Lab , accessed 29 July 2019

Bock, 1985, AI Mag., 6, 180

Shaikh, 2016, Renew. Sustain. Energy Rev., 55, 1041, 10.1016/j.rser.2015.11.010

Hande, 2007, Microprocess. Microsyst., 31, 420, 10.1016/j.micpro.2007.02.006

R. A. Kjellby , T. E.Johnsrud , S. E.Loetveit , L. R.Cenkeramaddi , M.Hamid and B.Beferull-Lozano , Proc. IEEE Int. Conf. VLSI Des., 2018 , 2018-Jan , pp. 455–456

Hinton, 2006, Science, 313, 504, 10.1126/science.1127647

Schmidhuber, 2015, Neural Network., 61, 85, 10.1016/j.neunet.2014.09.003

H. White and A.Ronald Gallant , Artificial neural networks: approximation and learning theory , Blackwell , 1992

Li, 2018, IEEE Netw., 32, 96, 10.1109/MNET.2018.1700202

Antunez, 2017, Nat. Energy, 2, 884, 10.1038/s41560-017-0028-5

Ferdowsi, 2018, Electrochim. Acta, 265, 194, 10.1016/j.electacta.2018.01.142

Saygili, 2016, J. Am. Chem. Soc., 138, 15087, 10.1021/jacs.6b10721

Freitag, 2016, J. Phys. Chem. C, 120, 9595, 10.1021/acs.jpcc.6b01658

Michaels, 2018, Inorganics, 6, 53, 10.3390/inorganics6020053

Zhang, 2016, J. Am. Chem. Soc., 138, 10742, 10.1021/jacs.6b05281

Hagberg, 2007, J. Org. Chem., 72, 9550, 10.1021/jo701592x

Ellis, 2013, Electrochim. Acta, 107, 45, 10.1016/j.electacta.2013.06.005

Solar Spectral Irradiance: Air Mass 1.5 , http://rredc.nrel.gov/solar/spectra/am1.5/ , accessed 28 March 2018

M. Rinderle , R.Freitag , M.Freitag , H.Michaels , I.Benesperi and G.Alessio , Light to Information , 10.5281/zenodo.3351718

M. Freitag , M.Rinderle , H.Michaels , R.Freitag , I.Benesperi and G.Alessio , Model and sample data for MNIST classification , 10.5281/zenodo.3351382

Raga, 2012, J. Phys. Chem. Lett., 3, 1629, 10.1021/jz3005464

Bisquert, 2009, J. Phys. Chem. C, 113, 17278, 10.1021/jp9037649

Freitag, 2015, Energy Environ. Sci., 8, 2634, 10.1039/C5EE01204J

Cao, 2017, Nat. Commun., 8, 15390, 10.1038/ncomms15390

Benesperi, 2018, J. Mater. Chem. C, 6, 11903, 10.1039/C8TC03542C

Aydogdu, 2003, Mater. Lett., 57, 3755, 10.1016/S0167-577X(03)00174-5

Juang, 2019, Front. Chem., 7, 209, 10.3389/fchem.2019.00209

Cui, 2019, Adv. Mater., 31, 1904512, 10.1002/adma.201904512

King, 2009, Science, 324, 85, 10.1126/science.1165620

Stanley, 2020, Adv. Theory Simul., 3, 1900178, 10.1002/adts.201900178

Samuel, 1959, IBM J. Res. Dev., 3, 210, 10.1147/rd.33.0210

Jordan, 2015, Science, 349, 255, 10.1126/science.aaa8415

Hittinger, 2019, Science, 364, 326, 10.1126/science.aau8825

M. Abadi , A.Agarwal , P.Barham , E.Brevdo , Z.Chen , C.Citro , G. S.Corrado , A.Davis , J.Dean , M.Devin , S.Ghemawat , I. J.Goodfellow , A.Harp , G.Irving , M.Isard , Y.Jia , R.Józefowicz , L.Kaiser , M.Kudlur , J.Levenberg , D.Mané , R.Monga , S.Moore , D. G.Murray , C.Olah , M.Schuster , J.Shlens , B.Steiner , I.Sutskever , K.Talwar , P. A.Tucker , V.Vanhoucke , V.Vasudevan , F. B.Viégas , O.Vinyals , P.Warden , M.Wattenberg , M.Wicke , Y.Yu and X.Zheng , TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, Computer Science, 2015 , arXiv:1603.04467

Lecun, 1998, Proc. IEEE, 86, 2278, 10.1109/5.726791

Y. Zhang , N.Suda , L.Lai and V.Chandra , Hello Edge: Keyword Spotting on Microcontrollers , http://arxiv.org/abs/1711.07128 , accessed 28 June 2019

Cireşan, 2010, Neural Comput., 22, 3207, 10.1162/NECO_a_00052

Weicker, 1984, Commun. ACM, 27, 1013, 10.1145/358274.358283

Khenkin, 2020, Nat. Energy, 5, 35, 10.1038/s41560-019-0529-5