Gubbi, 2013, Future Gener. Comput. Syst., 29, 1645, 10.1016/j.future.2013.01.010
Mohammadi, 2018, IEEE Commun. Mag., 56, 94, 10.1109/MCOM.2018.1700298
Liouane, 2018, Appl. Intell., 48, 2017, 10.1007/s10489-017-1062-5
A. Jukan and M.Chamania , in Advanced Photonics 2017 (IPR, NOMA, Sensors, Networks, SPPCom, PS) , OSA , Washington, D.C. , 2017 , p. NeM2B.4
A. Nicosia , D.Pau , D.Giacalone , E.Plebani , A.Bosco and A.Iacchetti , 2018 IEEE Int. Conf. Consum. Electron. , 2018-Jan , pp. 1–4
C. Bergonzini , D.Brunelli and L.Benini 3rd , Int. Work. Adv. Sensors Interfaces, IWASI , 2009 , vol. 2009 , pp. 144–149
Mathews, 2016, IEEE J. Photovolt., 6, 230, 10.1109/JPHOTOV.2015.2487825
Lee, 2019, Sol. RRL, 3, 1800207, 10.1002/solr.201800207
Lee, 2018, J. Mater. Chem. A, 6, 5618, 10.1039/C7TA10875C
Yin, 2018, J. Mater. Chem. C, 6, 9111, 10.1039/C8TC02838A
Yin, 2018, J. Mater. Chem. A, 6, 8579, 10.1039/C8TA01728J
Dagar, 2018, Nano Energy, 49, 290, 10.1016/j.nanoen.2018.04.027
Mathews, 2019, Adv. Funct. Mater., 29, 1904072, 10.1002/adfm.201904072
Mathews, 2019, Joule, 3, 1415, 10.1016/j.joule.2019.03.026
Müller, 2013, IEEE J. Photovolt., 3, 59, 10.1109/JPHOTOV.2012.2225023
Teran, 2015, IEEE Trans. Electron Devices, 62, 2170, 10.1109/TED.2015.2434336
Li, 2015, Sol. Energy, 111, 21, 10.1016/j.solener.2014.10.024
Chen, 2019, Adv. Opt. Mater., 7, 1
Reese, 2011, Sol. Energy Mater. Sol. Cells, 95, 1253, 10.1016/j.solmat.2011.01.036
Freitag, 2017, Nat. Photonics, 11, 372, 10.1038/nphoton.2017.60
Cao, 2018, Joule, 2, 1108, 10.1016/j.joule.2018.03.017
De Rossi, 2015, Appl. Energy, 156, 413, 10.1016/j.apenergy.2015.07.031
Minnaert, 2014, Energies, 7, 1500, 10.3390/en7031500
Freitag, 2015, Energy Environ. Sci., 8, 2634, 10.1039/C5EE01204J
Zhang, 2018, Energy Environ. Sci., 11, 1779, 10.1039/C8EE00661J
Kakiage, 2015, Chem. Commun., 51, 15894, 10.1039/C5CC06759F
Haight, 2016, Science, 353, 124, 10.1126/science.aag0476
E. Olivetti , J.Gregory and R.Kirchain , Life cycle impacts of alkaline batteries with afocus on end-of-life , Massachusetts Institute of Technology, Materials Systems Lab , accessed 29 July 2019
Bock, 1985, AI Mag., 6, 180
Shaikh, 2016, Renew. Sustain. Energy Rev., 55, 1041, 10.1016/j.rser.2015.11.010
Hande, 2007, Microprocess. Microsyst., 31, 420, 10.1016/j.micpro.2007.02.006
R. A. Kjellby , T. E.Johnsrud , S. E.Loetveit , L. R.Cenkeramaddi , M.Hamid and B.Beferull-Lozano , Proc. IEEE Int. Conf. VLSI Des., 2018 , 2018-Jan , pp. 455–456
Hinton, 2006, Science, 313, 504, 10.1126/science.1127647
Schmidhuber, 2015, Neural Network., 61, 85, 10.1016/j.neunet.2014.09.003
H. White and A.Ronald Gallant , Artificial neural networks: approximation and learning theory , Blackwell , 1992
Li, 2018, IEEE Netw., 32, 96, 10.1109/MNET.2018.1700202
Antunez, 2017, Nat. Energy, 2, 884, 10.1038/s41560-017-0028-5
Ferdowsi, 2018, Electrochim. Acta, 265, 194, 10.1016/j.electacta.2018.01.142
Saygili, 2016, J. Am. Chem. Soc., 138, 15087, 10.1021/jacs.6b10721
Freitag, 2016, J. Phys. Chem. C, 120, 9595, 10.1021/acs.jpcc.6b01658
Michaels, 2018, Inorganics, 6, 53, 10.3390/inorganics6020053
Zhang, 2016, J. Am. Chem. Soc., 138, 10742, 10.1021/jacs.6b05281
Hagberg, 2007, J. Org. Chem., 72, 9550, 10.1021/jo701592x
Ellis, 2013, Electrochim. Acta, 107, 45, 10.1016/j.electacta.2013.06.005
Solar Spectral Irradiance: Air Mass 1.5 , http://rredc.nrel.gov/solar/spectra/am1.5/ , accessed 28 March 2018
M. Rinderle , R.Freitag , M.Freitag , H.Michaels , I.Benesperi and G.Alessio , Light to Information , 10.5281/zenodo.3351718
M. Freitag , M.Rinderle , H.Michaels , R.Freitag , I.Benesperi and G.Alessio , Model and sample data for MNIST classification , 10.5281/zenodo.3351382
Raga, 2012, J. Phys. Chem. Lett., 3, 1629, 10.1021/jz3005464
Bisquert, 2009, J. Phys. Chem. C, 113, 17278, 10.1021/jp9037649
Freitag, 2015, Energy Environ. Sci., 8, 2634, 10.1039/C5EE01204J
Cao, 2017, Nat. Commun., 8, 15390, 10.1038/ncomms15390
Benesperi, 2018, J. Mater. Chem. C, 6, 11903, 10.1039/C8TC03542C
Aydogdu, 2003, Mater. Lett., 57, 3755, 10.1016/S0167-577X(03)00174-5
Juang, 2019, Front. Chem., 7, 209, 10.3389/fchem.2019.00209
Cui, 2019, Adv. Mater., 31, 1904512, 10.1002/adma.201904512
King, 2009, Science, 324, 85, 10.1126/science.1165620
Stanley, 2020, Adv. Theory Simul., 3, 1900178, 10.1002/adts.201900178
Samuel, 1959, IBM J. Res. Dev., 3, 210, 10.1147/rd.33.0210
Jordan, 2015, Science, 349, 255, 10.1126/science.aaa8415
Hittinger, 2019, Science, 364, 326, 10.1126/science.aau8825
M. Abadi , A.Agarwal , P.Barham , E.Brevdo , Z.Chen , C.Citro , G. S.Corrado , A.Davis , J.Dean , M.Devin , S.Ghemawat , I. J.Goodfellow , A.Harp , G.Irving , M.Isard , Y.Jia , R.Józefowicz , L.Kaiser , M.Kudlur , J.Levenberg , D.Mané , R.Monga , S.Moore , D. G.Murray , C.Olah , M.Schuster , J.Shlens , B.Steiner , I.Sutskever , K.Talwar , P. A.Tucker , V.Vanhoucke , V.Vasudevan , F. B.Viégas , O.Vinyals , P.Warden , M.Wattenberg , M.Wicke , Y.Yu and X.Zheng , TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, Computer Science, 2015 , arXiv:1603.04467
Lecun, 1998, Proc. IEEE, 86, 2278, 10.1109/5.726791
Y. Zhang , N.Suda , L.Lai and V.Chandra , Hello Edge: Keyword Spotting on Microcontrollers , http://arxiv.org/abs/1711.07128 , accessed 28 June 2019
Cireşan, 2010, Neural Comput., 22, 3207, 10.1162/NECO_a_00052
Weicker, 1984, Commun. ACM, 27, 1013, 10.1145/358274.358283
Khenkin, 2020, Nat. Energy, 5, 35, 10.1038/s41560-019-0529-5