Dyadic fractions with small partial quotients

Springer Science and Business Media LLC - Tập 101 - Trang 309-315 - 1986
Harald Niederreiter1
1Kommission für Mathematik, Österreichische Akademie der Wissenschaften, Vienna, Austria

Tóm tắt

It is proved that ifm is a power of 2, then there exists an odd integera with 1≤a

Tài liệu tham khảo

Borosh, I., Niederreiter, H.: Optimal multipliers for pseudo-random number generation by the linear congruential method. BIT23, 65–74 (1983). Cusick, T. W.: Continuants with bounded digits. Mathematika24, 166–172 (1977). Cusick, T. W.: Continuants with bounded digits—II. Mathematika25, 107–109 (1978). Cusick, T. W.: Continuants with bounded digits—III. Mh. Math.99, 105–109 (1985). Hardy, G. H., Wright, E. M.: An Introduction to the Theory of Numbers. 4th ed. Oxford: Clarendon Press. 1960. Hlawka, E.: Zur angenäherten Berechnung mehrfacher Integrale. Mh. Math.66, 140–151 (1962). Niederreiter, H.: Pseudo-random numbers and optimal coefficients. Adv. Math.26, 99–181 (1977). Niederreiter, H.: Quasi-Monte Carlo methods and pseudo-random numbers. Bull. Amer. Math. Soc.84, 957–1041 (1978). Pethö, A.: Perfect powers in second order linear recurrences. J. Number Theory15, 5–13 (1982). Ramharter, G.: Some metrical properties of continued fractions. Mathematika30, 117–132 (1983). Zaremba, S. K.: Good lattice points, discrepancy, and numerical integration. Ann. Mat. Pura Appl. (IV)73, 293–317 (1966). Zaremba, S. K.: La méthode des “bons treillis” pour le calcul des intégrales multiples. In: Applications of Number Theory to Numerical Analysis (S. K. Zaremba, ed.), pp. 39–119. New York: Academic Press. 1972.