Dust opacity variations in the pre-stellar core L1544

Astronomy and Astrophysics - Tập 623 - Trang A118 - 2019
A. Chacón-Tanarro1, Jaime E. Pineda1, P. Caselli1, L. Bizzocchi1, R. A. Gutermuth2, B. S. Mason3, Arturo I. Gómez-Ruiz4, J. Harju5,1, Mark J. Devlin6, Simon Dicker6, Tony Mroczkowski7, C. Romero6, Jonathan Sievers8, Sara Stanchfield6, Stella S. R. Offner9, David Sánchez-Argüelles10
1Max-Planck-Institüt für extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching, Germany
2Department of Astronomy, University of Massachusetts, Amherst MA 01003, USA
3National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA
4CONACYT-Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis E. Erro 1, 72840 Tonantzintla, Puebla, México
5Department of Physics, University of Helsinki, PO Box 64, 00014 Helsinki, Finland
6Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, USA
7ESO European Organization for Astronomical Research in the Southern hemisphere, Karl-Schwarzschild-Str. 2, 85748 Garching b. München, Germany
8School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa
9Department of Astronomy, University of Texas at Austin, Austin, USA
10Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Luis Enrique Erro 1, 72840 Puebla, Mexico

Tóm tắt

Context. The study of dust emission at millimeter wavelengths is important to shed light on the dust properties and physical structure of pre-stellar cores, the initial conditions in the process of star and planet formation. Aims. Using two new continuum facilities, AzTEC at the Large Millimeter Telescope Alfonso Serrano and MUSTANG-2 at the Green Bank Observatory, we aim to detect changes in the optical properties of dust grains as a function of radius for the well-known pre-stellar core L1544. Methods. We determined the emission profiles at 1.1 and 3.3 mm and examine whether they can be reproduced in terms of the current best physical models for L1544. We also made use of various tools to determine the radial distributions of the density, temperature, and dust opacity in a self-consistent manner. Results. We find that our observations cannot be reproduced without invoking opacity variations. New temperature and density profiles, as well as opacity variations across the core, have been derived with the new data. The opacity changes are consistent with the expected variations between uncoagulated bare grains, toward the outer regions of the core, and grains with thick ice mantles, toward the core center. A simple analytical grain growth model predicts the presence of grains of ~3–4 μm within the central 2000 au for the new density profile.

Từ khóa


Tài liệu tham khảo

Agladze, 1996, ApJ, 462, 1026, 10.1086/177217

André, 2010, A&A, 518, L102, 10.1051/0004-6361/201014666

Bergin, 2007, ARA&A, 45, 339, 10.1146/annurev.astro.45.071206.100404

Black J. H. 1994, in The First Symposium on the Infrared Cirrus and Diffuse Interstellar Clouds, eds. Cutri R. M., & Latter W. B., ASP Conf. Ser., 58, 355

Blum, 2004, Phys. Rev. Lett., 93, 115503, 10.1103/PhysRevLett.93.115503

Bohlin, 1978, ApJ, 224, 132, 10.1086/156357

Bonnor, 1956, MNRAS, 116, 351, 10.1093/mnras/116.3.351

Bracco, 2017, A&A, 604, A52, 10.1051/0004-6361/201731117

Bracewell R. N. 1986, The Fourier Transform and its Applications (New York: Mcgraw-Hill College)

Calzetti, 2018, ApJ, 852, 106, 10.3847/1538-4357/aaa1e2

Caselli, 2012, A&ARv, 20, 56, 10.1007/s00159-012-0056-x

Caselli, 1999, ApJ, 523, L165, 10.1086/312280

Chacón-Tanarro, 2017, A&A, 606, A142, 10.1051/0004-6361/201630265

Chen, 2016, ApJ, 826, 95, 10.3847/0004-637X/826/1/95

Cottingham D. A. 1987, Ph.D. Thesis, Princeton University, NJ

Crapsi, 2005, ApJ, 619, 379, 10.1086/426472

Crapsi, 2007, A&A, 470, 221, 10.1051/0004-6361:20077613

Demyk, 2017, A&A, 606, A50, 10.1051/0004-6361/201730944

Dicker, 2014, J. Low Temp. Phys., 176, 808, 10.1007/s10909-013-1070-8

Draine B. T. 2011, Physics of the Interstellar and Intergalactic Medium (Princeton, NJ: Princeton University Press)

Fomalont, 2014, The Messenger, 155, 19

Forbrich, 2015, A&A, 580, A114, 10.1051/0004-6361/201425375

Foster, 2013, MNRAS, 428, 1606, 10.1093/mnras/sts144

Hildebrand, 1983, QJRAS, 24, 267

Hincks, 2010, ApJS, 191, 423, 10.1088/0067-0049/191/2/423

Juvela, 2015, A&A, 584, A94, 10.1051/0004-6361/201425269

Juvela, 2015, A&A, 584, A93, 10.1051/0004-6361/201423788

Kauffmann, 2008, A&A, 487, 993, 10.1051/0004-6361:200809481

Keto, 2010, MNRAS, 402, 1625, 10.1111/j.1365-2966.2009.16033.x

Keto, 2015, MNRAS, 446, 3731, 10.1093/mnras/stu2247

Kruegel, 1994, A&A, 288, 929

Mangum, 2007, A&A, 474, 679, 10.1051/0004-6361:20077811

Mathis, 1983, A&A, 128, 212

Ormel, 2009, A&A, 502, 845, 10.1051/0004-6361/200811158

Ormel, 2011, A&A, 532, A43, 10.1051/0004-6361/201117058

Ossenkopf, 1994, A&A, 291, 943

Roy, 2014, A&A, 562, A138, 10.1051/0004-6361/201322236

Sadavoy, 2016, A&A, 588, A30, 10.1051/0004-6361/201527364

Scott, 2008, MNRAS, 385, 2225, 10.1111/j.1365-2966.2008.12989.x

Shetty, 2009, ApJ, 696, 676, 10.1088/0004-637X/696/1/676

Shetty, 2009, ApJ, 696, 2234, 10.1088/0004-637X/696/2/2234

Spezzano, 2016, A&A, 592, L11, 10.1051/0004-6361/201628652

Stanchfield, 2016, J. Low Temp. Phys., 184, 460, 10.1007/s10909-016-1570-4

Tafalla, 1998, ApJ, 504, 900, 10.1086/306115

Tafalla, 2002, ApJ, 569, 815, 10.1086/339321

Ward-Thompson, 1999, MNRAS, 305, 143, 10.1046/j.1365-8711.1999.02412.x

Wilson, 2008, MNRAS, 386, 807, 10.1111/j.1365-2966.2008.12980.x

Woitke, 2016, A&A, 586, A103, 10.1051/0004-6361/201526538

Zhao, 2016, MNRAS, 460, 2050, 10.1093/mnras/stw1124

Zucconi, 2001, A&A, 376, 650, 10.1051/0004-6361:20010778