Durable high-rate capability Na0.44MnO2 cathode material for sodium-ion batteries

Nano Energy - Tập 27 - Trang 602-610 - 2016
Xin He1, Jun Wang1, Bao Qiu2, Elie Paillard3, Chuze Ma4, Xia Cao1, Haodong Liu4, Marian Cristian Stan1, Haidong Liu1, Tobias Gallash1, Y. Shirley Meng4, Jie Li1
1MEET Battery Research Center, Institute of Physical Chemistry, University of Muenster, Corrensstrasse 46, 48149 Muenster, Germany
2Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, Zhejiang 315201, PR China
3Helmholtz-Institut Münster (IEK-12: Ionics in Energy Storage), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
4Laboratory of Energy Storage and Conversion, Department of NanoEngineering, University of California, La Jolla, San Diego, CA 92093, USA

Tài liệu tham khảo

Thackeray, 2012, Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries, Energy Environ. Sci., 5, 7854, 10.1039/c2ee21892e Dunn, 2011, Electrical energy storage for the grid: a battery of choices, Science, 334, 928, 10.1126/science.1212741 Gogotsi, 2011, True performance metrics in electrochemical energy storage, Science, 334, 917, 10.1126/science.1213003 Ellis, 2012, Sodium and sodium-ion energy storage batteries, Curr. Opin. Solid State Mater. Sci., 16, 168, 10.1016/j.cossms.2012.04.002 Kim, 2012, Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries, Adv. Energy Mater., 2, 710, 10.1002/aenm.201200026 Palomares, 2012, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems, Energy Environ. Sci., 5, 5884, 10.1039/c2ee02781j Slater, 2013, Sodium-ion batteries, Adv. Funct. Mater., 23, 947, 10.1002/adfm.201200691 Li, 2014, Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries, Adv. Mater., 26, 3545, 10.1002/adma.201305522 Hong, 2013, Charge carriers in rechargeable batteries: Na ions vs. Li ions, Energy Environ. Sci., 6, 2067, 10.1039/c3ee40811f Cao, 2011, Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life, Adv. Mater., 23, 3155, 10.1002/adma.201100904 Kim, 2013, Na2FeP2O7 as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries: a combined experimental and theoretical study, Adv. Funct. Mater., 23, 1147, 10.1002/adfm.201201589 Barpanda, 2013, Na2FeP2O7: a safe cathode for rechargeable sodium-ion batteries, Chem. Mater., 25, 3480, 10.1021/cm401657c Park, 2013, Anomalous manganese activation of a pyrophosphate cathode in sodium ion batteries: a combined experimental and theoretical study, J. Am. Chem. Soc., 135, 2787, 10.1021/ja312044k Jian, 2013, Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries, Adv. Energy Mater., 3, 156, 10.1002/aenm.201200558 Casas-Cabanas, 2012, Crystal chemistry of Na insertion/deinsertion in FePO4-NaFePO4, J. Mater. Chem., 22, 17421, 10.1039/c2jm33639a Moreau, 2010, Structure and stability of sodium intercalated phases in olivine FePO4, Chem. Mater., 22, 4126, 10.1021/cm101377h Lee, 2011, Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries, Chem. Mater., 23, 3593, 10.1021/cm200450y Lim, 2014, Role of intermediate phase for stable cycling of Na7V4(P2O7)4PO4 in sodium ion battery, Proc. Natl. Acad. Sci., 111, 599, 10.1073/pnas.1316557110 Oh, 2014, Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C–Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage, Nano Lett., 14, 1620, 10.1021/nl500077v Yabuuchi, 2012, P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries, Nat. Mater., 11, 512, 10.1038/nmat3309 Berthelot, 2011, Electrochemical investigation of the P2–NaxCoO2 phase diagram, Nat. Mater., 10, 74, 10.1038/nmat2920 Sauvage, 2007, Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2, Inorg. Chem., 46, 3289, 10.1021/ic0700250 Caballero, 2002, Synthesis and characterization of high-temperature hexagonal P2-Na0.6 MnO2 and its electrochemical behaviour as cathode in sodium cells, J. Mater. Chem., 12, 1142, 10.1039/b108830k Le Goff, 1993, Structural and electrochemical characteristics of a lamellar sodium manganese oxide synthesized via a sol-gel process, Solid State Ion., 61, 309, 10.1016/0167-2738(93)90397-L Li, 2009, Formation of Na0.44MnO2 nanowires via stress-induced splitting of birnessite nanosheets, Nano Res., 2, 54, 10.1007/s12274-009-9003-1 Xu, 2014, Synthesis and application of ultra-long Na0.44MnO2 submicron slabs as a cathode material for na-ion batteries, RSC Adv., 4, 38140, 10.1039/C4RA07355J Bresser, 2013, Carbon coated ZnFe2O4 nanoparticles for advanced lithium-ion anodes, Adv. Energy Mater., 3, 513, 10.1002/aenm.201200735 Wang, 2016, O3-type Na[Fe1/3Ni1/3Ti1/3]O2 cathode material for rechargeable sodium ion batteries, J. Mater. Chem. A, 4, 3431, 10.1039/C5TA10520J Zhou, 2013, Synthesis and characterization of Na0.44MnO2 from solution precursors, J. Mater. Chem. A, 1, 2757, 10.1039/c3ta01134h Tevar, 2010, Relating synthesis conditions and electrochemical performance for the sodium intercalation compound Na4Mn9O18 in aqueous electrolyte, J. Electrochem. Soc., 157, A870, 10.1149/1.3428667 Doeff, 2001, A high-rate manganese oxide for rechargeable lithium battery applications, J. Electrochem. Soc., 148, A230, 10.1149/1.1349883 Kruk, 2011, Coupled commensurate cation and charge modulation in the tunneled structure, Na0.40(2)MnO2, J. Am. Chem. Soc., 133, 13950, 10.1021/ja109707q Saint, 2008, Electrode materials with the Na0.44MnO2 structure: effect of titanium substitution on physical and electrochemical properties, Chem. Mater., 20, 3404, 10.1021/cm800247u Doeff, 1994, Orthorhombic Nax MnO2 as a cathode material for secondary sodium and lithium polymer batteries, J. Electrochem. Soc., 141, L145, 10.1149/1.2059323 Liu, 2015, Fast preparation of Na0.44MnO2 nanorods via a high NaOH concentration hydrothermal soft chemical reaction and their lithium storage properties, J. Nanopart. Res., 17, 1, 10.1007/s11051-015-2954-0 Zhan, 2015, Facile synthesis of nanorod-like single crystalline Na0.44MnO2 for high performance sodium-ion batteries, J. Electrochem. Soc., 162, A1028, 10.1149/2.0891506jes Demirel, 2015, Growth mechanism and magnetic and electrochemical properties of Na0.44MnO2 nanorods as cathode material for Na-ion batteries, Mater. Charact., 105, 104, 10.1016/j.matchar.2015.05.005 Kim, 2012, Ab initio study of the sodium intercalation and intermediate phases in Na0.44MnO2 for sodium-ion battery, Chem. Mater., 24, 1205, 10.1021/cm300065y Doeff, 2002, Synthesis and characterization of a copper-substituted manganese oxide with the Na0.44MnO2 structure, J. Power Sources, 112, 294, 10.1016/S0378-7753(02)00449-4 Hosono, 2012, High power Na-ion rechargeable battery with single-crystalline Na0.44MnO2 nanowire electrode, J. Power Sources, 217, 43, 10.1016/j.jpowsour.2012.05.100 Zhao, 2013, Na0.44MnO2-CNT electrodes for non-aqueous sodium batteries, RSC Adv., 3, 6650, 10.1039/c3ra23032e Kim, 2013, Diffusion behavior of sodium ions in Na0.44MnO2 in aqueous and non-aqueous electrolytes, J. Power Sources, 244, 758, 10.1016/j.jpowsour.2013.02.090