Durable high-rate capability Na0.44MnO2 cathode material for sodium-ion batteries
Tài liệu tham khảo
Thackeray, 2012, Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries, Energy Environ. Sci., 5, 7854, 10.1039/c2ee21892e
Dunn, 2011, Electrical energy storage for the grid: a battery of choices, Science, 334, 928, 10.1126/science.1212741
Gogotsi, 2011, True performance metrics in electrochemical energy storage, Science, 334, 917, 10.1126/science.1213003
Ellis, 2012, Sodium and sodium-ion energy storage batteries, Curr. Opin. Solid State Mater. Sci., 16, 168, 10.1016/j.cossms.2012.04.002
Kim, 2012, Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries, Adv. Energy Mater., 2, 710, 10.1002/aenm.201200026
Palomares, 2012, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems, Energy Environ. Sci., 5, 5884, 10.1039/c2ee02781j
Slater, 2013, Sodium-ion batteries, Adv. Funct. Mater., 23, 947, 10.1002/adfm.201200691
Li, 2014, Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries, Adv. Mater., 26, 3545, 10.1002/adma.201305522
Hong, 2013, Charge carriers in rechargeable batteries: Na ions vs. Li ions, Energy Environ. Sci., 6, 2067, 10.1039/c3ee40811f
Cao, 2011, Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life, Adv. Mater., 23, 3155, 10.1002/adma.201100904
Kim, 2013, Na2FeP2O7 as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries: a combined experimental and theoretical study, Adv. Funct. Mater., 23, 1147, 10.1002/adfm.201201589
Barpanda, 2013, Na2FeP2O7: a safe cathode for rechargeable sodium-ion batteries, Chem. Mater., 25, 3480, 10.1021/cm401657c
Park, 2013, Anomalous manganese activation of a pyrophosphate cathode in sodium ion batteries: a combined experimental and theoretical study, J. Am. Chem. Soc., 135, 2787, 10.1021/ja312044k
Jian, 2013, Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries, Adv. Energy Mater., 3, 156, 10.1002/aenm.201200558
Casas-Cabanas, 2012, Crystal chemistry of Na insertion/deinsertion in FePO4-NaFePO4, J. Mater. Chem., 22, 17421, 10.1039/c2jm33639a
Moreau, 2010, Structure and stability of sodium intercalated phases in olivine FePO4, Chem. Mater., 22, 4126, 10.1021/cm101377h
Lee, 2011, Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries, Chem. Mater., 23, 3593, 10.1021/cm200450y
Lim, 2014, Role of intermediate phase for stable cycling of Na7V4(P2O7)4PO4 in sodium ion battery, Proc. Natl. Acad. Sci., 111, 599, 10.1073/pnas.1316557110
Oh, 2014, Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C–Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage, Nano Lett., 14, 1620, 10.1021/nl500077v
Yabuuchi, 2012, P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries, Nat. Mater., 11, 512, 10.1038/nmat3309
Berthelot, 2011, Electrochemical investigation of the P2–NaxCoO2 phase diagram, Nat. Mater., 10, 74, 10.1038/nmat2920
Sauvage, 2007, Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2, Inorg. Chem., 46, 3289, 10.1021/ic0700250
Caballero, 2002, Synthesis and characterization of high-temperature hexagonal P2-Na0.6 MnO2 and its electrochemical behaviour as cathode in sodium cells, J. Mater. Chem., 12, 1142, 10.1039/b108830k
Le Goff, 1993, Structural and electrochemical characteristics of a lamellar sodium manganese oxide synthesized via a sol-gel process, Solid State Ion., 61, 309, 10.1016/0167-2738(93)90397-L
Li, 2009, Formation of Na0.44MnO2 nanowires via stress-induced splitting of birnessite nanosheets, Nano Res., 2, 54, 10.1007/s12274-009-9003-1
Xu, 2014, Synthesis and application of ultra-long Na0.44MnO2 submicron slabs as a cathode material for na-ion batteries, RSC Adv., 4, 38140, 10.1039/C4RA07355J
Bresser, 2013, Carbon coated ZnFe2O4 nanoparticles for advanced lithium-ion anodes, Adv. Energy Mater., 3, 513, 10.1002/aenm.201200735
Wang, 2016, O3-type Na[Fe1/3Ni1/3Ti1/3]O2 cathode material for rechargeable sodium ion batteries, J. Mater. Chem. A, 4, 3431, 10.1039/C5TA10520J
Zhou, 2013, Synthesis and characterization of Na0.44MnO2 from solution precursors, J. Mater. Chem. A, 1, 2757, 10.1039/c3ta01134h
Tevar, 2010, Relating synthesis conditions and electrochemical performance for the sodium intercalation compound Na4Mn9O18 in aqueous electrolyte, J. Electrochem. Soc., 157, A870, 10.1149/1.3428667
Doeff, 2001, A high-rate manganese oxide for rechargeable lithium battery applications, J. Electrochem. Soc., 148, A230, 10.1149/1.1349883
Kruk, 2011, Coupled commensurate cation and charge modulation in the tunneled structure, Na0.40(2)MnO2, J. Am. Chem. Soc., 133, 13950, 10.1021/ja109707q
Saint, 2008, Electrode materials with the Na0.44MnO2 structure: effect of titanium substitution on physical and electrochemical properties, Chem. Mater., 20, 3404, 10.1021/cm800247u
Doeff, 1994, Orthorhombic Nax MnO2 as a cathode material for secondary sodium and lithium polymer batteries, J. Electrochem. Soc., 141, L145, 10.1149/1.2059323
Liu, 2015, Fast preparation of Na0.44MnO2 nanorods via a high NaOH concentration hydrothermal soft chemical reaction and their lithium storage properties, J. Nanopart. Res., 17, 1, 10.1007/s11051-015-2954-0
Zhan, 2015, Facile synthesis of nanorod-like single crystalline Na0.44MnO2 for high performance sodium-ion batteries, J. Electrochem. Soc., 162, A1028, 10.1149/2.0891506jes
Demirel, 2015, Growth mechanism and magnetic and electrochemical properties of Na0.44MnO2 nanorods as cathode material for Na-ion batteries, Mater. Charact., 105, 104, 10.1016/j.matchar.2015.05.005
Kim, 2012, Ab initio study of the sodium intercalation and intermediate phases in Na0.44MnO2 for sodium-ion battery, Chem. Mater., 24, 1205, 10.1021/cm300065y
Doeff, 2002, Synthesis and characterization of a copper-substituted manganese oxide with the Na0.44MnO2 structure, J. Power Sources, 112, 294, 10.1016/S0378-7753(02)00449-4
Hosono, 2012, High power Na-ion rechargeable battery with single-crystalline Na0.44MnO2 nanowire electrode, J. Power Sources, 217, 43, 10.1016/j.jpowsour.2012.05.100
Zhao, 2013, Na0.44MnO2-CNT electrodes for non-aqueous sodium batteries, RSC Adv., 3, 6650, 10.1039/c3ra23032e
Kim, 2013, Diffusion behavior of sodium ions in Na0.44MnO2 in aqueous and non-aqueous electrolytes, J. Power Sources, 244, 758, 10.1016/j.jpowsour.2013.02.090