Dupin Cyclides are Not of $$L_{1}$$ L 1 -Finite Type
Tóm tắt
Từ khóa
Tài liệu tham khảo
Baikoussis, C., Verstraelen, L.: The Chen-type of the spiral surfaces. Results Math. 28, 214–223 (1995)
Cecil, T.E., Ryan, P.J.: Tight and taut immersions of manifolds. Pitman, London (1985)
Chen, B.Y.: Surfaces of finite type in Euclidean $$3-$$ 3 - space. Bull. Soc. Math. Belg. Ser B 39, 243–254 (1987)
Chen, B.Y.: Null 2-type surfaces in $$E^3$$ E 3 are circular cylinders. Kodai Math. J. 11, 295–299 (1988)
Chen, B.Y.: Some open problems and conjetures on submanifolds of finite type. Soochow J. Math. 17, 169–188 (1991)
Chen, B.Y.: A report on submanifolds of finite type. Soochow J. Math. 22(2), 117–337 (1996)
Defever, F., Deszcz, R., Verstraelen, L.: The compact cyclides of Dupin and a generalized conjecture of B.Y. Chen. J. Geom. 46, 33–38 (1993)
Defever, F., Deszcz, R., Verstraelen, L.: The Chen-type of the noncompact cyclieds of Dupin. Glasgow. Math. J. 36, 71–75 (1994)
Dupin, C.: Applications de géometrie et de méchanique. Bachelier, Paris (1822)
Ferrández, A., Lucas, P.: Finite Type Surfaces of Revolution. Riv. Mat. Pura Appl. 12, 75–87 (1992)
Fladt, K., Baure, A.: Analytische geometrie spezieller Flächen und Raumkurven. Vieweg, Braunschweig (1975)
Hasanis, Th, Vlachos, Th: Surfaces of finite type with constant mean curvature. Kodai Math. J. 16(2), 244–252 (1993)
Kashani, S.M.B.: On some $$L_1$$ L 1 -finite type (hyper)surfaces in $$\mathbb{R}^{n+1}$$ R n + 1 . Bull. Korean Math. Soc. 46(1), 35–43 (2009)
Mohammadpouri, A., Kashani, S.M.B., Pashaie, F.: On some $$L_1$$ L 1 -finite type Euclidean surfaces. Acta Math. Vietnam. 38(2), 303–316 (2013)
Mohammadpouri, A., Kashani, S.M.B.: On some $$L\_k-$$ L _ k - finite type Euclidean hypersurfaces. ISRN Geom. 2012, 23 (2012)