Duals of Besov and Triebel-Lizorkin Spaces Associated with Operators
Tóm tắt
We consider the general framework of a metric measure space satisfying the doubling volume property, associated with a non-negative self-adjoint operator, whose heat kernel enjoys standard Gaussian localization. We study the dual spaces of the classical and nonclassical Besov and Triebel-Lizorkin spaces on this setting. Our results generalize those on Euclidean spaces and are new on several setups of independent interest; the sphere, the ball, more general Riemannian manifolds and other settings.
Tài liệu tham khảo
Bui, H.-Q., Bui, T.A., Duong, X.T.: Weighted Besov and Triebel-Lizorkin spaces associated with operators and applications. Forum Math. Sigma 8(e11), 95 (2020)
Bownik, M.: Duality and interpolation of anisotropic Triebel?Lizorkin spaces. Math. Z. 259, 131–169 (2008)
Castillo, I., Kerkyacharian, G., Picard, D.: Thomas Bayes walk on manifolds. Probab. Theory Relat. Fields 158(3–4), 665–710 (2014)
Cleanthous, G., Georgiadis, A.G., Kerkyacharian, G., Petrushev, P., Picard, D.: Kernel and wavelet density estimators on manifolds or more general metric spaces. Bernoulli 26(3), 1832–1862 (2020)
Coifman, R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83(4), 569–645 (1977)
Coifman, R., Weiss, G.: Analyse harmonique non-commutative sur certains espaces homogenes. Lecture Notes in Math, vol. 242. Springer-Verlag, Berlin and New York (1971)
Coulhon, T., Kerkyacharian, G., Petrushev, P.: Heat kernel generated frames in the setting of Dirichlet spaces. J. Fourier Anal. Appl. 18(5), 995–1066 (2012)
Dai, F., Xu, Y.: Approximation theory and harmonic analysis on spheres and balls. Springer Monographs in Mathematics, Springer, New York (2013)
Dekel, S., Kerkyacharian, G., Kyriazis, G., Petrushev, P.: Compactly supported frames for spaces of distributions associated with nonnegative self-adjoint operators. Studia Math. 225(2), 115–163 (2014)
Dekel, S., Kerkyacharian, G., Kyriazis, G., Petrushev, P.: Hardy spaces associated with non-negative self-adjoint operators. Studia Math. 239(1), 1–54 (2017)
Frazier, M., Jawerth, B.: Decomposition of Besov Spaces. Indiana Univ. Math. J. 34, 777–799 (1985)
Georgiadis, A.G., Kyriazis, G.: Embeddings between Triebel-Lizorkin spaces on metric spaces associated with operators. Anal. Geom. Metr. Spaces 8(1), 418–429 (2020)
Georgiadis, A.G., Kerkyacharian, G., Kyriazis, G., Petrushev, P.: Homogeneous Besov and Triebel-Lizorkin spaces associated to non-negative self-adjoint operators. J. Math. Anal. Appl. 449(2), 1382–1412 (2017)
Georgiadis, A.G., Kerkyacharian, G., Kyriazis, G., Petrushev, P.: Atomic and molecular decomposition for homogeneous spaces of distributions associated to non-negative self-adjoint operators. J. Fourier Anal. Appl. 25(6), 3259–3309 (2019)
Georgiadis, A.G., Nielsen, M.: Pseudodifferential operators on spaces of distributions associated with non-negative self-adjoint operators. J. Fourier Anal. Appl. 23(2), 344–378 (2017)
Georgiadis, A.G., Nielsen, M.: Spectral multipliers on spaces of distributions associated with non-negative self-adjoint operators. J. Approx. Theory 234, 1–19 (2018)
Jawerth, B.: Some observations on Besov and Lizorkin-Triebel spaces. Math. Scand. 40(1), 94–104 (1977)
Kerkyacharian, G., Ogawa, S., Petrushev, P., Picard, D.: Regularity of Gaussian processes on Dirichlet spaces. Constr. Approx. 47(2), 277–320 (2018)
Kerkyacharian, G., Petrushev, P.: Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet spaces. Trans. Am. Math. Soc. 367, 121–189 (2015)
Kerkyacharian, G., Petrushev, P., Xu, Y.: Gaussian bounds for the weighted heat kernels on the interval, ball and simplex. Constr. Approx. 51, 73–122 (2020)
Li, B., Bownik, M., Yang, D., Yuan, W.: Duality of weighted anisotropic Besov and Triebel-Lizorkin spaces. Positivity 16, 213–244 (2012)
Liu, L., Yang, D., Yuan, W.: Besov-type and Triebel-Lizorkin-type spaces associated with heat kernels. Collect. Math. 67(2), 247–310 (2016)
Triebel, H.: Spaces of distributions of Besov type on Euclidean \(n\)-space. Duality, interpolation. Ark. Mat. 11, 13–64 (1973)
Triebel, H.: Theory of function spaces. Monographs in Math, vol. 78. Birkhäuser Verlag, Basel (1983)
Verbitsky, I.: Imbedding and multiplier theorems for discrete littlewood? Paley spaces. Pac. J. Math. 176, 529–556 (1996)