Dualization of Signal Recovery Problems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Amar, M., Bellettini, G.: A notion of total variation depending on a metric with discontinuous coefficients. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 11, 91–133 (1994)
Andrews, H.C., Hunt, B.R.: Digital Image Restoration. Prentice-Hall, Englewood Cliffs (1977)
Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing, 2nd edn. Springer, New York (2006)
Aubin, J.-P. Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (1990)
Bauschke, H.H., Combettes, P.L.: A Dykstra-like algorithm for two monotone operators. Pacific J. Optim. 4, 383–391 (2008)
Bauschke, H.H., Combettes, P.L.: The Baillon–Haddad theorem revisited. J. Convex Anal. 17 (2010)
Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2, 183–202 (2009)
Bect, J., Blanc-Féraud, L., Aubert, G., Chambolle, A.: A ℓ1 unified variational framework for image restoration. In: Pajdla, T., Matas, J. (eds.) Proc. Eighth Europ. Conf. Comput. Vision, Prague. Lecture Notes in Computer Science, vol. 3024, pp. 1–13. Springer, New York (2004)
Ben-Tal, A., Borwein, J.M., Teboulle, M.: A dual approach to multidimensional L p spectral estimation problems. SIAM J. Control Optim. 26, 985–996 (1988)
Bertero, M., De Mol, C., Pike, E.R.: Linear inverse problems with discrete data I—general formulation and singular system analysis. Inverse Probl. 1, 301–330 (1985)
Bioucas-Dias, J.M., Figueiredo, M.A.: A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process 16, 2992–3004 (2007)
Borwein, J.M., Lewis, A.S., Noll, D.: Maximum entropy reconstruction using derivative information. I: Fisher information and convex duality. Math. Oper. Res. 21, 442–468 (1996)
Borwein, J.M., Luke, D.R.: Duality and convex programming. In: Scherzer, O. (ed.) Handbook of Imaging. Springer, New York (to appear)
Bredies, K. Lorenz, D.A.: Linear convergence of iterative soft-thresholding. J. Fourier Anal. Appl. 14, 813–837 (2008)
Briceño-Arias, L.M., Combettes, P.L.: Convex variational formulation with smooth coupling for multicomponent signal decomposition and recovery. Numer. Math. Theory Methods Appl. 2, 485–508 (2009)
Byrne, C.L.: Signal Processing—A Mathematical Approach. A. K. Peters, Wellesley (2005)
Cai, J.-F. Chan, R.H., Shen, L., Shen, Z.: Convergence analysis of tight framelet approach for missing data recovery. Adv. Comput. Math. 31, 87–113 (2009)
Cai, J.-F., Chan, R.H., Shen, Z.: A framelet-based image inpainting algorithm. Appl. Comput. Harmon. Anal. 24, 131–149 (2008)
Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221–239 (1994)
Censor, Y., Zenios, S.A.: Parallel Optimization: Theory, Algorithms and Applications. Oxford University Press, New York (1997)
Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)
Chambolle, A.: Total variation minimization and a class of binary MRF model. Lect. Notes Comput. Sci. 3757, 136–152 (2005)
Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20, 1964–1977 (1999)
Chaux, C., Combettes, P.L., Pesquet, J.-C., Wajs, V.R.: A variational formulation for frame-based inverse problems. Inverse Probl. 23, 1495–1518 (2007)
Chaux, C., Pesquet, J.-C., Pustelnik, N.: Nested iterative algorithms for convex contrained image recovery problems,. SIAM J. Imag. Sci. 2, 730–762 (2009)
Combettes, P.L.: Signal recovery by best feasible approximation. IEEE Trans. Image Process. 2, 269–271 (1993)
Combettes, P.L.: Inconsistent signal feasibility problems: Least-squares solutions in a product space. IEEE Trans. Signal Process. 42, 2955–2966 (1994)
Combettes, P.L.: The convex feasibility problem in image recovery. In: Hawkes, P. (ed.) Advances in Imaging and Electron Physics, vol. 95, pp. 155–270. Academic, New York (1996)
Combettes, P.L., Dũng, Đ., Vũ, B.C.: Dualization of signal recovery problems. Preprint, 2 July 2009. http://arxiv.org/abs/0907.0436
Combettes, P.L., Pesquet, J.-C.: Proximal thresholding algorithm for minimization over orthonormal bases. SIAM J. Optim. 18, 1351–1376 (2007)
Combettes, P.L., Pesquet, J.-C.: A Douglas–Rachford splitting approach to nonsmooth convex variational signal recovery. IEEE Selected J. Topics Signal Process. 1, 564–574 (2007)
Combettes, P.L., Trussell, H.J.: The use of noise properties in set theoretic estimation. IEEE Trans. Signal Process. 39, 1630–1641 (1991)
Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4, 1168–1200 (2005)
Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57, 1413–1457 (2004)
Daubechies, I., Teschke, G., Vese, L.: Iteratively solving linear inverse problems under general convex constraints. Inverse Probl. Imaging 1, 29–46 (2007)
Destuynder, P., Jaoua, M., Sellami, H.: A dual algorithm for denoising and preserving edges in image processing. J. Inverse Ill-Posed Probl. Ser. 15, 149–165 (2007)
Donoho, D., Johnstone, I.: Ideal spatial adaptation via wavelet shrinkage. Biometrika 81, 425–455 (1994)
Durand, S., Nikolova, M.: Denoising of frame coefficients using ℓ1 data-fidelity term and edge-preserving regularization. Multiscale Model. Simul. 6, 547–576 (2007)
Ekeland, I., Temam, R.: Analyse Convexe et Problèmes Variationnels, Dunod, Paris, 1974; Convex Analysis and Variational Problems. SIAM, Philadelphia (1999)
Fadili, J., Peyré, G.: Total variation projection with first order schemes. Preprint (2009). http://hal.archives-ouvertes.fr/hal-00380491
Fenchel, W.: Convex Cones, Sets and Functions. Lecture Notes (mimeograph). Princeton University (1953)
Fornasier, M.: Domain decomposition methods for linear inverse problems with sparsity constraints. Inverse Probl. 23, 2505–2526 (2007)
Hintermüller, M., Stadler, G.: An infeasible primal-dual algorithm for total bounded variation-based inf-convolution-type image restoration. SIAM J. Sci. Comput. 28, 1–23 (2006)
Huang, Y., Ng, M.K., Wen, Y.-W.: A fast total variation minimization method for image restoration. Multiscale Model. Simul. 7, 774–795 (2008)
Iusem, A.N., Teboulle, M.: A regularized dual-based iterative method for a class of image reconstruction problems. Inverse Probl. 9, 679–696 (1993)
Kärkkäinen, T., Majava, K., Mäkelä, M.M.: Comparison of formulations and solution methods for image restoration problems. Inverse Probl. 17, 1977–1995 (2001)
Leahy, R.M., Goutis, C.E.: An optimal technique for constraint-based image restoration and reconstruction. IEEE Trans. Acoust. Speech Signal Process. 34, 1629–1642 (1986)
Mallat, S.G.: A Wavelet Tour of Signal Processing, 2nd edn. Academic, New York (1999)
Medoff, B.P.: Image reconstruction from limited data: theory and applications in computerized tomography. In: Stark, H. (ed.) Image Recovery: Theory and Application, pp. 321–368. Academic, San Diego (1987)
Mercier, B.: Inéquations Variationnelles de la Mécanique (Publications Mathématiques d’Orsay, no. 80.01). Orsay, France, Université de Paris-XI (1980)
Moreau, J.-J.: Fonctions convexes duales et points proximaux dans un espace hilbertien. C.R. Acad Sci. Paris Sér. A Math. 255, 2897–2899 (1962)
Moreau, J.-J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. Fr. 93, 273-299 (1965)
Moreau, J.-J.: Fonctionnelles Convexes. Séminaire sur les Équations aux Dérivées Partielles II. Collège de France, Paris (1966–1967)
Nemirovsky, A.S., Yudin, D.B.: Problem Complexity and Method Efficiency in Optimization. Wiley, New York (1983)
Noll, D.: Reconstruction with noisy data: An approach via eigenvalue optimization. SIAM J. Optim. 8, 82–104 (1998)
Papoulis, A.: A new algorithm in spectral analysis and band-limited extrapolation. IEEE Trans. Circuits Syst. 22, 735–742 (1975)
Polak, E.: Computational Methods in Optimization: A Unified Approach. Academic, New York (1971)
Potter, L.C., Arun, K.S.: A dual approach to linear inverse problems with convex constraints. SIAM J. Control Optim. 31, 1080–1092 (1993)
Rockafellar, R.T.: Duality and stability in extremum problems involving convex functions. Pac. Math. J. 21, 167–187 (1967)
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)
Stark, H. (Ed.): Image Recovery: Theory and Application. Academic, San Diego (1987)
Steinhardt, A.O., Goodrich, R.K., Roberts, R.A.: Spectral estimation via minimum energy correlation extension. IEEE Trans. Acoust. Speech Signal Process. 33, 1509–1515 (1985)
Tropp, J.A.: Just relax: Convex programming methods for identifying sparse signals in noise. IEEE Trans. Inf. Theory 52, 1030–1051 (2006)
Trussell, H.J., Civanlar, M.R.: The feasible solution in signal restoration. IEEE Trans. Acoust. Speech Signal Process. 32, 201–212 (1984)
Twomey, S.: The application of numerical filtering to the solution of integral equations encountered in indirect sensing measurements. J. Franklin Inst. 279, 95–109 (1965)
van den Berg, E., Friedlander, M.P.: Probing the Pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 31, 890–912 (2008)
Weaver, J.B., Xu, Y., Healy, D.M., Jr., Cromwell, L.D.: Filtering noise from images with wavelet transforms. Magn. Reson. Med. 21, 288–295 (1991)
Weiss, P., Aubert, G., Blanc-Féraud, L.: Efficient schemes for total variation minimization under constraints in image processing. SIAM J. Sci. Comput. 31, 2047–2080 (2009)
Youla, D.C.: Generalized image restoration by the method of alternating orthogonal projections. IEEE Trans. Circuits Syst. 25, 694–702 (1978)
Youla, D.C., Velasco, V.: Extensions of a result on the synthesis of signals in the presence of inconsistent constraints. IEEE Trans. Circuits Syst. 33, 465–468 (1986)
Youla, D.C., Webb, H.: Image restoration by the method of convex projections: Part 1—theory. IEEE Trans. Med. Imag. 1, 81–94 (1982)