Duality theorems in the theory of nonlinear oscillations
Tài liệu tham khảo
P. S. Aleksandrov, Combinatorial Topology [in Russian], Gostekhizdat, Moscow (1947).
N. A. Bobylev, “The theory of factor-methods for approximate solution of nonlinear problems,” Dokl. Akad. Nauk SSSR,199, No. 1, 9–12 (1971).
N. A. Bobylev and A. M. Dement'eva, “A duality theorem,” in: Applied Methods of Functional Analysis [in Russian], Izd. VGU, Voronezh (1985), pp. 29–33.
N. A. Bobylev, A. M. Krasnosel'skii, and M. A. Krasnosel'skii, “Stability of periodic oscillations and their construction by the harmonic balance method,” Avtomat. Telemekh., No. 7, 179–181 (1989).
N. A. Bobylev and M. A. Krasnosel'skii, “Parameter functionalization and duality theorem for autonomous systems,” Diff. Uravn.,6, No. 11, 1946–1952 (1970).
N. A. Bobylev and M. A. Krasnosel'skii, “Operators with continua of fixed points,” Dokl. Akad. Nauk SSSR,205, No. 5, 1015–1018 (1972).
N. A. Bobylev and M. A. Krasnosel'skii, “Approximate construction of oscillation modes in automatic control systems,” Dokl. Akad. Nauk SSSR,272, No. 2, 267–271 (1983).
N. A. Bobylev and M. A. Krasnosel'skii, “The harmonic balance method in the natural oscillation problem,” Avtomat. Telemekh., No. 9, 44–51 (1984).
P. P. Zabreiko and M. A. Krasnosel'skii, “Operator iterations and fixed points,” Dokl. Akad. Nauk SSSR,196, No. 5, 1006–1009 (1971).
P. P. Zabreiko, M. A. Krasnosel'skii, and V. V. Strygin, “On rotation invariance principles,” Izv. Vuzov, Matem., No. 5, 51–57 (1972).
P. P. Zabreiko and V. P. Tikhonov, “Defining equations and the duality principle,” Sib. Mat. Zh.,24, No. 1, 79–88 (1983).
M. A. Krasnosel'skii, “Approximate computation of eigenvalues and functions of a perturbed operator,” Dokl. Akad. Nauk UkrSSR, No. 3 (1953).
M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations [in Russian], Gostekhizdat, Moscow (1956).