Dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) as a novel marker in T1 high-grade and T2 bladder cancer patients receiving neoadjuvant chemotherapy

Springer Science and Business Media LLC - Tập 15 - Trang 1-6 - 2015
Shunichiro Nomura1, Yasutomo Suzuki1, Ryo Takahashi1, Mika Terasaki2, Ryoji Kimata1, Yasuhiro Terasaki2, Tsutomu Hamasaki1, Go Kimura1, Akira Shimizu2, Yukihiro Kondo1
1Departments of Urology, Nippon Medical School, Bunkyo-ku, Japan
2Analytic Human Pathology, Nippon Medical School, Bunkyo-ku, Japan

Tóm tắt

To investigate associations between dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) expression and survival in T1 high-grade or T2 bladder cancer patients treated with neoadjuvant chemotherapy. The cohort under investigation comprised 44 patients who underwent neoadjuvant chemotherapy for pT1 high-grade or pT2N0M0 bladder cancer at our institution between 2002 and 2011. Immunohistochemical analysis was used to determine expression of DYRK2 in bladder cancer specimens obtained by transurethral resection before chemotherapy. Relationships between DYRK2 expression and both response to chemotherapy and survival in these patients were analyzed. DYRK2 expression was positive in 21 of 44 patients (47.7 %) and negative in 23 patients (52.3 %). In total, 20 of 21 DYRK2-positive cases showed complete response to neoadjuvant chemotherapy, whereas 11 of 23 DYRK2-negative cases did not show complete response. Sensitivity and specificity were 62.5 % and 91.7 %, respectively (P = 0.0018). In addition, disease-specific survival rate was significantly higher for DYRK2-positive patients than for DYRK2-negative patients (P = 0.017). In multivariate analysis, DYRK2 expression level was identified as an independent prognostic factor for disease-specific survival (P = 0.029). We also showed that DYRK2 mRNA expression was significantly higher in DYRK2-positive samples by immunohistochemistry than DYRK2-negative samples (P = 0.040). DYRK2 expression level may predict the efficacy of neoadjuvant chemotherapy for T1 high-grade and T2 bladder cancer.

Tài liệu tham khảo

Bassi P, Ferrante GD, Piazza N, Spinadin R, Carando R, Pappagallo G, et al. Prognostic factors of outcome after radical cystectomy for bladder cancer: a retrospective study of a homogeneous patient cohort. J Urol. 1999;161(5):1494–7. Dalbagni G, Genega E, Hashibe M, Zhang ZF, Russo P, Herr H, et al. Cystectomy for bladder cancer: a contemporary series. J Urol. 2001;165(4):1111–6. Ghoneim MA, el-Mekresh MM, el-Baz MA, el-Attar IA, Ashamallah A. Radical cystectomy for carcinoma of the bladder: critical evaluation of the results in 1,026 cases. J Urol. 1997;158(2):393–9. Stein JP, Lieskovsky G, Cote R, Groshen S, Feng AC, Boyd S, et al. Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1,054 patients. J Clin Oncol. 2001;19(3):666–75. Stein JP, Skinner DG. Radical cystectomy for invasive bladder cancer: long-term results of a standard procedure. World J Urol. 2006;24(3):296–304. Grossman HB, Natale RB, Tangen CM, Speights VO, Vogelzang NJ, Trump DL, et al. Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. The New England Journal of Medicine. 2003;349(9):859–66. Sherif A, Holmberg L, Rintala E, Mestad O, Nilsson J, Nilsson S, et al. Neoadjuvant cisplatinum based combination chemotherapy in patients with invasive bladder cancer: a combined analysis of two Nordic studies. European Urology. 2004;45(3):297–303. Winquist E, Kirchner TS, Segal R, Chin J, Lukka H. Neoadjuvant chemotherapy for transitional cell carcinoma of the bladder: a systematic review and meta-analysis. J Urol. 2004;171(2 Pt 1):561–9. Becker W, Joost HG. Structural and functional characteristics of Dyrk, a novel subfamily of protein kinases with dual specificity. Progress in Nucleic Acid Research and Molecular Biology. 1999;62:1–17. Campbell LE, Proud CG. Differing substrate specificities of members of the DYRK family of arginine-directed protein kinases. FEBS Lett. 2002;510(1–2):31–6. Himpel S, Panzer P, Eirmbter K, Czajkowska H, Sayed M, Packman LC, et al. Identification of the autophosphorylation sites and characterization of their effects in the protein kinase DYRK1A. The Biochemical Journal. 2001;359(Pt 3):497–505. Aranda S, Laguna A, de la Luna S. DYRK family of protein kinases: evolutionary relationships, biochemical properties, and functional roles. FASEB J. 2011;25(2):449–62. Park J, Song WJ, Chung KC. Function and regulation of Dyrk1A: towards understanding Down syndrome. Cell Mol Life Sci. 2009;66(20):3235–40. Taira N, Nihira K, Yamaguchi T, Miki Y, Yoshida K. DYRK2 is targeted to the nucleus and controls p53 via Ser46 phosphorylation in the apoptotic response to DNA damage. Mol Cell. 2007;25(5):725–38. Kaufman DS, Winter KA, Shipley WU, Heney NM, Wallace 3rd HJ, Toonkel LM, et al. Phase I-II RTOG study (99–06) of patients with muscle-invasive bladder cancer undergoing transurethral surgery, paclitaxel, cisplatin, and twice-daily radiotherapy followed by selective bladder preservation or radical cystectomy and adjuvant chemotherapy. Urology. 2009;73(4):833–7. Takahashi R, Kimata R, Nomura S, Matsuzawa I, Suzuki Y, Hamasaki T, et al. The role of serum cytokeratin 19 fragment in transarterial infusion against invasive bladder cancer. Open J Urol. 2013;3(3):160–4. Yamashita S, Chujo M, Moroga T, Anami K, Tokuishi K, Miyawaki M, et al. DYRK2 expression may be a predictive marker for chemotherapy in non-small cell lung cancer. Anticancer Res. 2009;29(7):2753–7. Bellmunt J, Paz-Ares L, Cuello M, Cecere FL, Albiol S, Guillem V, et al. Gene expression of ERCC1 as a novel prognostic marker in advanced bladder cancer patients receiving cisplatin-based chemotherapy. Ann Oncol. 2007;18(3):522–8. Font A, Taron M, Gago JL, Costa C, Sanchez JJ, Carrato C, et al. BRCA1 mRNA expression and outcome to neoadjuvant cisplatin-based chemotherapy in bladder cancer. Annals Oncol. 2011;22(1):139–44. Hoffmann AC, Wild P, Leicht C, Bertz S, Danenberg KD, Danenberg PV, et al. MDR1 and ERCC1 expression predict outcome of patients with locally advanced bladder cancer receiving adjuvant chemotherapy. Neoplasia (New York, NY). 2010;12(8):628–36. Nomura S, Suzuki Y, Takahashi R, Terasaki M, Kimata R, Hamasaki T, et al. Snail expression and outcome in T1 high-grade and T2 bladder cancer: a retrospective immunohistochemical analysis. BMC Urol. 2013;13(1):73.