Dual spaces for variable martingale Lorentz–Hardy spaces
Tóm tắt
Let
$$H_{p(\cdot ),q}$$
be the variable Lorentz–Hardy martingale spaces. In this paper, we give a new atomic decomposition for these spaces via simple
$$L_r$$
-atoms
$$(1
Tài liệu tham khảo
Aoyama, H.: Lebesgue spaces with variable exponent on a probability space. Hiroshima Math. J. 39(2), 207–216 (2009)
Bennett, C., Sharpley, R.: Interpolation of Operators. Pure and Applied Mathematics. Academic Press, Inc., Boston (1988)
Boyd, D.: Indices of function spaces and their relationship to interpolation. Can. J. Math. 21, 1245–1254 (1969)
Cruz-Uribe, D., Fiorenza, A.: Approximate identities in variable \(L_p\) spaces. Math. Nachr. 280(3), 256–270 (2007)
Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces. Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, Heidelberg (2013)
Fan, X., Zhao, D.: On the spaces \(L^{p(x)}(\Omega )\) and \(W^{m, p(x)}(\Omega )\). J. Math. Anal. Appl. 263(2), 424–446 (2001)
Fefferman, C.: Characterizations of bounded mean oscillation. Bull. Amer. Math. Soc. 77, 587–588 (1971)
Fefferman, R., Soria, F.: The space weak \(H^1\). Stud. Math. 85(1), 1–16 (1986)
Garsia A.: Martingale inequalities: Seminar Notes on Recent Progress. Mathematics Lecture Notes Series. W. A. Benjamin, Inc., Reading, Mass.-London-Amsterdam (1973)
Garca-Cuerva J, Rubio de Francia J.: Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies, vol. 116. Notas de Matemctica [Mathematical Notes], 104. North-Holland Publishing Co., Amsterdam (1985)
Grafakos, L..: Classical Fourier Analysis. Graduate Texts in Mathematics, 2nd edn. Springer, New York (2008)
Hao, Z., Jiao, Y.: Fractional integral on martingale Hardy spaces with variable exponents. Fract. Calc. Appl. Anal. 18(5), 1128–1145 (2015)
Herz C.: \(H_p\)-spaces of martingales, \(0<p\le 1\). Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 28 (1973/74), 189–205
Jiao, Y., Peng, L., Liu, P.: Atomic decompositions of Lorentz martingale spaces and applications. J. Funct. Spaces Appl. 7(2), 153–166 (2009)
Jiao, Y., Weisz, F., Wu, L., Zhou, D.: Variable martingale Hardy spaces and their applications in Fourier analysis, Dissertationes Math. 550, 67 (2020)
Jiao, Y., Wu, L., Peng, L.: Weak Orlicz-Hardy martingale spaces. Internat. J. Math., 26(8), 1550062, 26 p (2015)
Jiao, Y., Wu, L., Yang, A., Yi, R.: The predual and John–Nirenberg inequalities on generalized BMO martingale space. Trans. Am. Math. Soc. 369(1), 537–553 (2017)
Jiao, Y., Xie, G., Zhou, D.: Dual spaces and John–Nirenberg inequalities of martingale Hardy-Lorentz–Karamata spaces. Q. J. Math. 66(2), 605–623 (2015)
Jiao, Y., Zhou, D., Hao, Z., Chen, W.: Martingale Hardy spaces with variable exponents. Banach J. Math. Anal. 10(4), 750–770 (2016)
John, F., Nirenberg, L.: On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14, 415–426 (1961)
Kempka, H., Vybíral, J.: Lorentz spaces with variable exponents. Math. Nachr. 287(8–9), 938–954 (2014)
Krein, S., Petunin, Y., Semenov, E.: Interpolation of linear operators. Translated from the Russian by J. Szucs. Translations of Mathematical Monographs, vol. 54. American Mathematical Society, Providence, R.I. (1982)
Long, R.: Martingale Spaces and Inequalities. Peking University Press, Friedr. Vieweg & Sohn, Beijing, Braunschweig (1993)
Miyamoto, T., Nakai, E., Sadasue, G.: Martingale Orlicz–Hardy spaces. Math. Nachr. 285(5–6), 670–686 (2012)
Nakai, E., Sadasue, G.: Maximal function on generalized martingale Lebesgue spaces with variable exponent. Stat. Probab. Lett. 83(10), 2168–2171 (2013)
Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262(9), 3665–3748 (2012)
Novikov, I.: Martingale inequalities in rearrangement invariant function spaces. Function spacespp, pp. 120–127. (Pozna, 1989)
Weisz, F.: Martingale Hardy spaces for \(0<p\le 1\). Probab. Theory Related Fields 84(3), 361–376 (1990)
Weisz, F.: Martingale Hardy Spaces and Their Applications in Fourier Analysis. Lecture Notes in Mathematics. Springer-Verlag, Berlin (1994)
Weisz, F.: Summability of Multi-Dimensional Fourier Series and Hardy Spaces. Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht (2002)
Weisz, F.: Weak martingale Hardy spaces. Probab. Math. Stat. 18, 133–148 (1998)
Weisz, F.: Dual spaces of multi-parameter martingale Hardy spaces. Q. J. Math. 67, 137–145 (2016)
Xie, G., Weisz, F., Yang, D., Jiao, Y.: New martingale inequalities and applications to Fourier analysis. Nonlinear Anal. 182, 143–192 (2019)
Yan, X., Yang, D., Yuan, W., Zhuo, C.: Variable weak Hardy spaces and their applications. J. Funct. Anal. 271(10), 2822–2887 (2016)
Yi, R., Wu, L., Jiao, Y.: New John-Nirenberg inequalities for martingales. Stat. Probab. Lett. 86, 68–73 (2014)
Zuo, Y., Saibi, K., Jiao, Y.: Variable Hardy–Lorentz spaces associated to operators satisfying Davies–Gaffney estimates. Banach J. Math. Anal. 13(4), 769–797 (2019)